Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vừa làm bên Học 24 xong nhưng do gửi link thì bị lỗi nên t up lại, tiện thể ăn điểm luôn (tất nhiên giúp you vẫn là lí do chính, điểm là tiện thôi :))
\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\frac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x-y+2}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
\(\Rightarrow x=y-2\). Thay vào \(pt\left(1\right)\) ta có:
\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)
\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)
\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)
\(\Leftrightarrow\frac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\frac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\frac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\frac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\left(y-4\right)^2\left(\frac{1}{\sqrt{y^2-8y+25}+3}-\frac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)
\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)
Vậy \(x=2;y=4\)
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Ngồi gõ cả tiếng rồi ngộ ra mới out nick :|
\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\dfrac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\dfrac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(\dfrac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
\(\Rightarrow x=y-2\). Thay vào \(pt(1)\) có:
\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)
\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)
\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)
\(\Leftrightarrow\dfrac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\dfrac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\dfrac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\dfrac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)
\(\Leftrightarrow\left(y-4\right)^2\left(\dfrac{1}{\sqrt{y^2-8y+25}+3}-\dfrac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)
\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)
Vậy \(x=2;y=4\)
tội nghiệp :))