\(\frac{1}{4x}+\frac{5}{12y}=\frac{4}{3xy} \)
...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

\(\left\{\begin{matrix}\frac{1\cdot3y}{4x\cdot3y}+\frac{5x}{12xy}=\frac{4\cdot4}{3xy\cdot4}\\\frac{3\cdot3y}{4x\cdot3y}-\frac{1\cdot4x}{3y\cdot4x}=\frac{-47x}{12xy}\end{matrix}\right.\)

\(\left\{\begin{matrix}\frac{3y}{12xy}+\frac{5x}{12xy}=\frac{16}{12xy}\\\frac{9y}{12xy}-\frac{4x}{12xy}=\frac{-47x}{12xy}\end{matrix}\right.\)

\(\left\{\begin{matrix}3y+5x=16\\9y-4x=-47x\end{matrix}\right.\)

\(\left\{\begin{matrix}5x+3y=16\\43x+9y=0\end{matrix}\right.\) ( nếu là toán violympic thì đến đây bạn có thể sử dụng MODE 5 bấm 1 rồi nhập vào bảng )

x=\(\frac{-12}{7}\)

y=\(\frac{172}{21}\)

27 tháng 7 2019

\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

18 tháng 7 2019

a) tìm x ể e xác định rồi rút gọn E

b) tìm x để E = \(\frac{-1}{2}\)

c) Tìm GTNN của E

 
17 tháng 8 2019

ĐK: \(x>2;y>1\)

pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

\(VT\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=24+4=28=VP\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=11\\y=5\end{cases}}\) ( nhận ) 

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

1 tháng 8 2016

điều kiện: x thuộc(\(-\infty;-3\))\(\cup\left(-\frac{7}{5}:+\infty\right)\)

PT<=> 5x+7=16x+48

<=>x=-41/14 (k thỏa)

\=> PTVN

2 tháng 8 2016

đkxđ : \(\begin{cases}5x+7\ge0\\x+3>0\end{cases}\) \(\Leftrightarrow\)  \(\begin{cases}x\ge\frac{7}{5}\\x>-3\end{cases}\)

pt \(\Leftrightarrow\)  \(\frac{5x+7}{x+3}\) = 16

    \(\Leftrightarrow\)  5x+7= 16x+48

    \(\Leftrightarrow\)  x= \(\frac{-41}{11}\)  (L)

Vậy pt vô nghiệm