Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)
Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)
Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath
Mình lộn xíu
\(\left(1\right)\Leftrightarrow x\left(y+1\right)+3\left(y-1\right)\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(x+3y-3\right)=0\)
\(\hept{\begin{cases}xy+3y^2+x=3\left(1\right)\\x^2+xy-2y^2=0\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(y+1\right)\left(x+3y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-1\\x=-3-3y\end{cases}}\)
Đến đây thay vào (2) rồi giải
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha
\(\hept{\begin{cases}xy=12\\x-2y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{y}\\\frac{12}{y}-2y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{12}{y}\\\frac{12}{y}-\frac{2y^2}{y}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{y}\\\frac{12-2y^2}{y}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{12}{y}\\12-2y^2-2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{y}\\y^2+y-6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2+2.\frac{1}{2}y+\frac{1}{4}-\frac{1}{4}-6=0\\x=\frac{12}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+\frac{1}{2}\right)^2-\frac{25}{4}=0\\x=\frac{12}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+\frac{1}{2}-\frac{5}{2}\right)\left(y+\frac{1}{2}+\frac{5}{2}\right)=0\\x=\frac{12}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)\left(y+3\right)=0\\x=\frac{12}{y}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=-3\end{cases}}\) và \(x=\frac{12}{y}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{2}\\x=\frac{12}{-3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}y=2\\y=-3\end{cases}}\) và \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)