\(\hept{\begin{cases}\left(x-y\right)^2\left(3x^2+2xy+3y^2-20\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dùng cái đầu đi ạ

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

1 tháng 1 2021

Từ pt (2) ta có \(x^4-4x^3-4yx^2+4x^2+y^2+2xy=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x^2\right)-4\left(x^2-2x\right)y+4y^2-3y^2-6xy=0\)\(\Leftrightarrow\left(x^2-2x-2y\right)^2=3y^2+6xy\)

Hệ pt đã cho trở thành: \(\hept{\begin{cases}x^2+2xy-2x-y=0\\\left(x^2-2x-2y\right)^2=3y^2+6xy\end{cases}}\Rightarrow\hept{\begin{cases}y=x^2+2xy-2x\left(3\right)\\y^2\left(1+2x\right)^2=3y\left(y+2x\right)\left(4\right)\end{cases}}\)

Từ (4) ta có: \(2y\left(2xy+2x^2-3x-y\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\2xy+2x^2-3x-y=0\end{cases}}\)

 + Với y=0 thì từ (3) ta có: \(x^2-2x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

+ Với \(2xy+2x^2-3x-y=0\Rightarrow y=2xy+2x^2y-3x\)thay vào (3) có \(x\left(2xy-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\Rightarrow y=0\\y=\frac{x+1}{2x}\left(x\ne0\right)\end{cases}}\)

Thay \(y=\frac{x+1}{2x}\left(x\ne0\right)\)vào pt(3) ta có: \(\left(x-1\right)\left(2x^2+1\right)=0\Leftrightarrow x=1\Rightarrow y=1\)

Vậy hệ pt đã cho có 3 nghiệm (x;y)=(0;0),(2;0),(1;1)

14 tháng 3 2020

Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)

<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)

<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)

<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)

<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)

<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)

Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)

Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!

28 tháng 7 2018

Viết lại phương trình thứ 2 của hệ thành:

\(\hept{\begin{cases}x^2+x\left(y-3\right)+y^2-4y+4=0\\y^2+y\left(x-4\right)+x^2-3x+4=0\end{cases}}\)   \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta_x\ge0\\\Delta_y\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}1\le y\le\frac{7}{3}\\0\le x\le\frac{4}{3}\end{cases}}\)

Thế  \(xy=-x^2-y^2+3x+4y-4\)từ pt  (2)  vào pt  (1)  ta được:

\(3x^3+18x^2+45x-3y^3+3y^2+8y-108=0\)

  • Xét hàm số:  \(f\left(x\right)=3x^3+18x^2+45x\)trên  \(\left[0;\frac{4}{3}\right]\)ta có:  \(f'\left(x\right)=9x^2+6x+45>0\)

nên hàm số   f(x)   đồng biến.  suy ra:  \(f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)

  • Xét hàm số:  \(g\left(y\right)=-3y^3+3y^2+8y-108\)trên \(\left[0;\frac{7}{3}\right]\)ta có:  \(g'\left(y\right)=-9y^2+6y+8,\)

\(g'\left(y\right)=0\)\(\Leftrightarrow\)\(y=\frac{4}{3}\) suy ra: \(g\left(y\right)\le g\left(\frac{4}{3}\right)=\frac{-892}{0}\)

suy ra:   \(f\left(x\right)+g\left(y\right)\le0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y=\frac{4}{3}\)

thử lại thấy đúng

nên cặp nghiệm \(\left(x;y\right)=\left(\frac{4}{3};\frac{4}{3}\right)\)thỏa mãn hệ

p/s: chúc bạn học tốt, cách này đối vs bạn chắc khó hiểu, có j thì hỏi thầy cô dạy cho dễ hiểu nha hoặc ib mk (nhưng mk mak giải thích thì chắc bạn khó hiểu hơn ^^ ko có khiếu ăn nói)

29 tháng 5 2017

đặt a = 2x + y; b = x - y thì 3x = a + b và 5x2 + 2y2 + 2xy = a2 + b2.

hệ sẽ là \(\hept{\begin{cases}a^2+b^2=26\\a+b+ab=11\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=26\\a+b+ab=11\end{cases}}}\)