K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

phương trình \(\left(2\right)\Leftrightarrow y=3x-5\) phương trình ( 3 ) .

\(\left(1\right)\Rightarrow5x+2\left(3x-5\right)=23\)

\(\Leftrightarrow5x+6x-10=23\)

\(\Leftrightarrow11x=33\Leftrightarrow x=3\)

\(\left(3\right)\Rightarrow y=4\). Vậy nghiệm của hệ đã cho là : ( 3 ; 4 )

19 tháng 5 2019

\(HPT\Leftrightarrow\hept{\begin{cases}5x+2y=23\\6x-2y=10\end{cases}}\).Cộng theo vế hai phương trình của hệ,ta được:

11x = 33 suy ra x = 3. Thay vào một trong hai phương trình của hệ suy ra y =4

Vậy nghiệm của hệ đã cho là: (x;y) = (3;4)

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

8 tháng 7 2019

\(\hept{\begin{cases}4x^2-5y-5=4x^2-12x+9\\21x+6=10y-5-3x\end{cases}}\)<=>\(\hept{\begin{cases}12x-5y=14\\24x-10y=-11\Leftrightarrow12x-5y=-\frac{11}{2}\end{cases}}\)

=>pt vô nghiệm

14 tháng 3 2020

Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)

Đến đây bạn tự giải tiếp

7 tháng 1 2019

i will chịu