K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

em mới học lớp 5 thôi,sorry Trầnnhy hum

5 tháng 5 2016

ukm, k có gì đâu Vũ Khanh Linh

9 tháng 10 2017

\(\left\{{}\begin{matrix}x^2+y^4-2xy^3=0\left(1\right)\\x^2+2y^2-2xy=1\left(2\right)\end{matrix}\right.\\ \)

\(\left(1\right)\Leftrightarrow2xy^3=x^2+y^4\Leftrightarrow2xy=\dfrac{x^2+y^4}{y^2}=\dfrac{x^2}{y^2}+y^2\left(3\right)\)

Thế (3)\(\) vào (2) ta được:

\(\left(2\right)\Leftrightarrow x^2+2y^2-\left(\dfrac{x^2}{y^2}+y^2\right)=1\Leftrightarrow x^2+y^2-\dfrac{x^2}{y^2}-1=0\Leftrightarrow\left(x^2+y^2\right)-\left(\dfrac{x^2}{y^2}+1\right)=0\Leftrightarrow\left(x^2+y^2\right)-\left(\dfrac{x^2+y^2}{y^2}\right)=0\Leftrightarrow\left(x^2+y^2\right)\left(1-\dfrac{1}{y^2}\right)=0\Rightarrow y=1\)Thế y=1 vào (3) ta được:

\(\left(3\right)\Leftrightarrow2x=x^2+1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

28 tháng 5 2017

Đk:\(x\ge\sqrt{15}\)

Đặt \(\sqrt{x^2-15}=a;\sqrt{x-3}=b\left(a,b>0\right)\)

Thì \(a^2+b^2=x^2+x-18\) khi đó

\(pt\Leftrightarrow a^2+b^2+1=ab+a+b\)

Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+1\ge2\sqrt{b^2}=2b\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

Cộng theo vế rồi thu gọn 3 BĐT trên ta có:

\(VT=a^2+b^2+1\ge ab+a+b=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+1=2b\\a^2+1=2a\end{matrix}\right.\)\(\Rightarrow a=b=1\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-15}=1\\\sqrt{x-3}=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^2-15=1\\x-3=1\end{matrix}\right.\Rightarrow x=4\left(x\ge\sqrt{15}\right)\)

1 tháng 6 2017

cảm ơn bạn nhiều yeu

1 tháng 3 2019

ukm để mik nghĩ đã

2 tháng 3 2019

Phương trình dầu là đồng bậc

5 tháng 2 2020

a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\) 

Lấy (2) trừ (1)

\(\Rightarrow x^2+xy+y^2=7\) (3)

Từ (3) và (2)

\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)

\(\Leftrightarrow x^2+y^2=5\)(4)

Thay( 4) vào (1)

\(\Rightarrow xy=\frac{10}{3}\) 

Thay xy vào (1)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)

=> tìm đc x ; y

cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x + xy + y2  vậy?

23 tháng 10 2019

b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)

Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)

* Với x + y = 2xy.

Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\) 

\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)

+) Với xy = 0 suy ra x +y = 0 => x =y = 0

+) Với xy = 1 => x +y = 2xy = 2

Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:

\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)

* Với x +y + 3xy + 1 = 0.

\(\Rightarrow x+y=-\left(3xy+1\right)\)

Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)

\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)

Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.

=> (x;y) = {(0;0) , (1;1)}

P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!

23 tháng 10 2019

c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)

Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)

Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)

Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)

Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)

Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).

Anh thử giải nốt xem sao?Em ko chắc đâu nhá!

26 tháng 8 2020

a) \(\left(xy+1\right)^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}xy+1=5\\xy+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{y}\\x=-\frac{6}{y}\end{cases}}\)

+ Nếu: \(x=\frac{4}{y}\Leftrightarrow\left(\frac{4}{y}+y\right)^2=49\)

\(\Leftrightarrow y^2+8+\frac{16}{y^2}=49\)

\(\Leftrightarrow\frac{y^4+16}{y^2}=41\)

\(\Leftrightarrow y^4-41y^2+16=0\) => y vô tỉ (loại)

+ Nếu: \(x=-\frac{6}{y}\Rightarrow\left(y-\frac{6}{y}\right)^2=49\)

\(\Leftrightarrow y^2+\frac{36}{y^2}=49+12\)

\(\Leftrightarrow y^4-61y^2+36=0\) => y vô tỉ (loại)

=> hpt vô nghiệm

b) tương tự

27 tháng 9 2016

\(\frac{1}{xy}\cdot\sqrt{\frac{x^2y^2}{2}}=\frac{1}{xy}\cdot\frac{xy}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)

\(\frac{3}{a^2-b^2}\cdot\sqrt{\frac{2\left(a+b\right)^2}{9}}=\frac{3}{a^2-b^2}\cdot\frac{\sqrt{2}\left(a+b\right)}{3}=\frac{\sqrt{2}}{a-b}\)

\(\left(x-2y\right)\sqrt{\frac{4}{\left(2y-x\right)^2}}=\left(x-2y\right)\cdot\frac{2}{\left(x-2y\right)}=2\)

 

30 tháng 9 2016

câu 1 chưa có điều kiện x y mà lại không cho giá trị tuyệt đối