K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

ĐKXĐ : \(x;y\ne0\)

Khi đó \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-\dfrac{x-y}{xy}\\2x^2-xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(\dfrac{xy+1}{xy}\right)=0\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\xy=-1\end{matrix}\right.\\2x^2-xy=1\end{matrix}\right.\)

Với x = y thì 2x2 - xy  = 1

<=> 2x2 - x2 = 1

<=> x2 = 1

<=> x = \(\pm1\) (tm) 

Khi x = -1 => y = -1

x = 1 => y = 1

Với xy = - 1 thì 2x2 - xy = 1

<=> 2x2 - (-1) = 1

<=> x2 = 0

<=> x = 0 (ktm) 

Vậy hệ có 2 nghiệm (x;y) = (1; 1) ; (-1 ; -1)

17 tháng 6 2021

Ai giúp mình với đi ạ
Mình cảm ơn nhiều.

17 tháng 6 2021

a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))

Đặt \(\dfrac{x}{x+1}\)  là A

\(\dfrac{y}{y+1}\) là B 

Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)

Giải HPT (1) ta được A=  \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)

+Với A=\(\dfrac{7}{5}\) ta có: 

\(\dfrac{x}{x+1}=\dfrac{7}{5}\)

<=>\(5x=7x+7\)

<=>-2x=7

<=> x=\(-\dfrac{7}{2}\)

+Với B = \(-\dfrac{4}{5}\) ta có:

\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)

<=>5y=-4y-4

<=>9y=-4

<=>y=\(-\dfrac{4}{9}\)

Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)

 

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x,y>0$

PT$(2)\Rightarrow \frac{1}{\sqrt{x}}-x=y+\frac{1}{\sqrt{y}}>0$

$\Rightarrow 1-x\sqrt{x}>1\Rightarrow 1>x$

Quay lại PT $(1)$:

$2x^2=xy+1$

Nếu $y\geq x$ thì: $2x^2=xy+1\geq x^2+1\Leftrightarrow x^2\geq 1\Rightarrow x\geq 1$ (vô lý vì $x<1$)

$\Rightarrow 0<y<x$

Khi đóTại PT$(2)$: $x+y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}<0$ (vô lý vì $x,y>0$)

Vậy HPT vô nghiệm

a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4

=>-2x+y=4 và 20x+3y=2

=>x=-5/13; y=42/13

b: =>4x+2|y|=8 và 4x-3y=1

=>2|y|-3y=7 và 4x-3y=1

TH1: y>=0

=>2y-3y=7 và 4x-3y=1

=>-y=7 và 4x-3y=1

=>y=-7(loại)

TH2: y<0

=>-2y-3y=7 và 4x-3y=1

=>y=-7/5; 4x=1+3y=1-21/5=-16/5

=>x=-4/5; y=-7/5

23 tháng 5 2021

Đk: \(x\ne0,y\ne-1\)

\(\left\{{}\begin{matrix}2x+3y=xy+5\left(1\right)\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1+x=x\left(y+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)

\(\Rightarrow2x+3y=y+1+5\)

\(\Leftrightarrow x=3-y\) thay vào (1) có:

\(2\left(3-y\right)+3y=\left(3-y\right)y+5\)

\(\Leftrightarrow y^2-2y+1=0\)

\(\Leftrightarrow y=1\) \(\Rightarrow x=2\)(tm)

Vậy (x;y)=(2;1)

 

30 tháng 5 2022

Thay \(x=\dfrac{3}{4}y\) vào phương trình dưới, ta có:

\(\dfrac{1}{2}\left(\dfrac{3}{4}y+3\right)\left(y-2\right)-\dfrac{1}{2}.\dfrac{3}{4}y^2=9\)

\(\Leftrightarrow\dfrac{3}{8}y^2-\dfrac{3}{4}y+\dfrac{3}{2}y-3-\dfrac{3}{8}y^2=9\\ \Leftrightarrow\dfrac{3}{4}y=12\\ \Leftrightarrow y=18\Rightarrow x=12\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(12;18\right)\)

30 tháng 5 2022

ỪM

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

NV
12 tháng 12 2020

1.

ĐKXĐ: ....

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-1=xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x-\dfrac{1}{x}=y\end{matrix}\right.\)

Trừ vế cho vế: \(\Rightarrow x=\dfrac{1}{y}\Rightarrow xy=1\)

Thay xuống pt dưới: \(2x^2-2=0\Leftrightarrow x^2=1\Leftrightarrow...\)

 

NV
12 tháng 12 2020

2.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}4x^3+1=\dfrac{3}{y}\\3x-1=\dfrac{4}{y^3}\end{matrix}\right.\)

Cộng vế với vế:

\(4x^3+3x=4\left(\dfrac{1}{y}\right)^3+3\left(\dfrac{1}{y}\right)\)

\(\Leftrightarrow4\left(x^3-\dfrac{1}{y^3}\right)+3\left(x-\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow4\left(x-\dfrac{1}{y}\right)\left(x^2+\dfrac{x}{y}+y^2\right)+3\left(x-\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{y}\right)\left(4x^2+\dfrac{4x}{y}+\dfrac{4}{y^2}+3\right)=0\)

\(\Leftrightarrow x-\dfrac{1}{y}=0\Leftrightarrow y=\dfrac{1}{x}\)

Thế vào pt đầu:

\(4x^3+1=3x\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Leftrightarrow...\)

NV
22 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=xy+3y-1\\\left(x+y\right)\left(x^2+1\right)=x^2+y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+\left(x-3\right)y+x^2+1=0\\x^3+x+x^2y-x^2-1=0\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow y^2-\left(x^2-x+3\right)y-x^3+2x^2-x+2=0\)

\(\Delta=\left(x^2-x+3\right)^2-4\left(-x^3+2x^2-x+2\right)=\left(x^2+x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{x^2-x+3+x^2+x-1}{2}=x^2+1\\y=\dfrac{x^2-x+3-x^2-x+1}{2}=-x+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\left[{}\begin{matrix}x+x^2+1=2\\x-x+2=\dfrac{x^2+1-x+2}{x^2+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)