Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(\left\{{}\begin{matrix}\dfrac{4x-3x^2y-9xy^2}{x+3y}\ge0\\x+3y\ne0\end{matrix}\right.\)
Với \(3y\ge x\), hệ tương đương:
\(\left\{{}\begin{matrix}\left(x^4-2x^2+4\right)\left(x^2+2\right)=6x^5y\\\left(3y-x\right)^2=\dfrac{4x}{x+3y}-3xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^6+8=6x^5y\left(1\right)\\x^3+27y^3=4x\end{matrix}\right.\left(I\right)\)
Vì \(x=0\) thì hệ vô nghiệm nên \(x\ne0\), khi đó:
\(\left(I\right)\Leftrightarrow\left\{{}\begin{matrix}1+\dfrac{8}{x^6}=\dfrac{6y}{x}\\1+\dfrac{27y^3}{x^3}=\dfrac{4}{x^2}\end{matrix}\right.\)
Đặt \(\dfrac{3y}{x}=a,\dfrac{2}{x^2}=b\) ta được hệ:
\(\Leftrightarrow\left\{{}\begin{matrix}1+a^3=2b\\1+b^3=2a\end{matrix}\right.\)
Giải hệ này ta được \(a=b\Leftrightarrow\dfrac{3y}{x}=\dfrac{2}{x^2}\Leftrightarrow y=\dfrac{2}{3x}\)
\(\left(1\right)\Leftrightarrow x^6-4x^4+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=\sqrt{1+\sqrt{5}}\\x=-\sqrt{1+\sqrt{5}}\end{matrix}\right.\)
TH1: \(x=\sqrt{2}\Rightarrow y=\dfrac{\sqrt{2}}{3}\)
TH2: \(x=-\sqrt{2}\Rightarrow y=-\dfrac{\sqrt{2}}{3}\)
TH3: \(x=\sqrt{1+\sqrt{5}}\Rightarrow y=\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
TH4: \(x=-\sqrt{1+\sqrt{5}}\Rightarrow y=-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\)
Đối chiếu với các điều kiện ta được \(\left(x;y\right)=\left(-\sqrt{1+\sqrt{5}};-\dfrac{2}{3\sqrt{1+\sqrt{5}}}\right)\)
ĐKXĐ:...
Biến đổi pt đầu:
\(2y\left(y-2x\right)+2\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
\(\Leftrightarrow2\left(y+1\right)\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{y-1}=a\\\sqrt{\left(y+1\right)\left(y-2x\right)}=b\end{matrix}\right.\) ta được:
\(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{y-1}=\sqrt{\left(y+1\right)\left(y-2x\right)}\left(1\right)\\\sqrt{y-1}=2\sqrt{\left(y+1\right)\left(y-2x\right)}\left(2\right)\end{matrix}\right.\)
Bình phương 2 vế phương trình dưới:
\(\Leftrightarrow y+1+y-2x+2\sqrt{\left(y+1\right)\left(y-2x\right)}=2y-2x+2\)
\(\Leftrightarrow2\sqrt{\left(y+1\right)\left(y-2x\right)}=1\) (3)
TH1: thế (1) vào (3) ta được:
\(2\sqrt{y-1}=1\Rightarrow y-1=\frac{1}{4}\Rightarrow y=\frac{5}{4}\Rightarrow x=\frac{41}{72}\)
TH2: thế (2) vào (3) ta được:
\(\sqrt{y-1}=1\Rightarrow y=2\Rightarrow x=\frac{23}{24}\)
Lời giải:
PT $(1)$:
\(\Leftrightarrow (x^2+4x+4)-y^2=2(\sqrt{y}-\sqrt{x+2})\)
\(\Leftrightarrow (x+2)^2-y^2=2(\sqrt{y}-\sqrt{x+2})(*)\)
Nếu $\sqrt{y}+\sqrt{x+2}=0\Rightarrow y=x+2=0$
$\Rightarrow y=0; x=-2$. Thay vào PT $(2)$ thấy không thỏa mãn (loại)
Nếu $\sqrt{y}+\sqrt{x+2}>0$:
$(*)\Leftrightarrow (x+2-y)(x+2+y)=2.\frac{y-(x+2)}{\sqrt{y}+\sqrt{x+2}}$
$\Leftrightarrow (x+2-y)\left[x+2+y+\frac{2}{\sqrt{y}+\sqrt{x+2}}\right]=0$
Dễ thấy với mọi $\sqrt{y}+\sqrt{x+2}$ thì biểu thức trong ngoặc vuông luôn lớn hơn $0$
Do đó $x+2-y=0\Rightarrow x+2=y$
Thay vào PT $(2)$:
$4\sqrt{x+2}+\sqrt{22-3x}=x^2+8$
\(\Leftrightarrow 4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)
\(\Leftrightarrow 4(\sqrt{x+2}-2)+(\sqrt{22-3x}-4)=x^2-4\)
\(\Leftrightarrow 4.\frac{x-2}{\sqrt{x+2}+2}-\frac{3(x-2)}{\sqrt{22-3x}+4}=(x-2)(x+2)\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{3}{\sqrt{22-3x}+4}-(x+2)\right]=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{4}{3}-(\frac{3}{\sqrt{22-3x}+4}-\frac{1}{3})-(x+1)\right]=0\)
\(\Leftrightarrow (x-2)\left[\frac{-4(x+1)}{3\sqrt{x+2}+2)(\sqrt{x+2}+1)}-\frac{3(x+1)}{3(\sqrt{22-3x}+4)(5+\sqrt{22-3x})}-(x+1)\right]=0\)
\(\Leftrightarrow (x-2)(x+1)\left[\frac{-4}{.....}-\frac{3}{.....}-1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn âm nên $(x-2)(x+1)=0\Rightarrow x=2$ hoặc $x=-1$
Với $x=2\rightarrow y=x+2=4$
Với $x=-1\rightarrow y=x+2=1$
\(\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\)
Xét \(pt\left(1\right)\Leftrightarrow2x^2+y^2-3xy-4x+3y+2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(2x-y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=2x-2\end{matrix}\right.\)
*)\(y=x-1\) thay vao \(pt(2)\) :
\(pt\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=0\end{matrix}\right.\)
*)\(y=2x-2\) thay vao \(pt(2)\):
\(pt\Leftrightarrow\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x^2-2x+5}+2}+\dfrac{1}{\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)