Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy\left(2y^3-x^3\right)=2y^5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\left(1\right)\\x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\left(2\right)\end{cases}}\)
Xét PT (2) ta có:
\(x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\)
Dễ thấy y = 0 không phải là nghiệm của hệ
Ta đặt \(x=ty\) thì ta có
\(\left(ty\right)^5+\left(ty\right)^3y^2-\left(ty\right)^2y^3+2tyy^4-\left(ty\right)^4y=2y^5\)
\(\Leftrightarrow t^5-t^4+t^3-t^2+2t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^4+t^2+2\right)=0\)
Vì \(t^4+t^2+2>0\)
\(\Rightarrow t=1\)
\(\Rightarrow x=y\)
Thế vô (1) ta được
\(2x^3-x^3=1\)
\(\Leftrightarrow x=y=1\)
a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)
Lời giải:
$2x+|2y-5|=3$
$x-3|2y-5|=-2$
$\Rightarrow 3(2x+|2y-5|)+(x-3|2y-5|)=3.3+(-2)$
$\Leftrightarrow 7x=7$
$\Leftrightarrow x=1$
$|2y-5|=3-2x=3-2.1=1$
$\Rightarrow 2y-5=\pm 1$
$\Rightarrow y=3$ hoặc $y=2$
Vậy $(x,y)=(1,3); (1,2)$