K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Câu a:

Xét tứ giác BKCN có:

IN=IK (đề bài)

IB=IC (đề bài)

=> Tứ giác BKCN là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> BK//CN (t/c hbh) => ^KBI=^ICN (góc so le trong)

Câu b:

Vì tg AMB vuông vân tại M => ^MAB=^MBA=45

Vì tg ANC vuông cân tại N => ^NAC=^NCA=45

+ ^MAN=^MAB+^BAC+^NAC=45+^BAC+45=90+^BAC

+ ^NCI=^NCA+^ACB=45+^ACB

+ ^IBM=^MBA+^ABC=45+^ABC

=> ^MAN+^NCI+^IBM=90+^BAC+45+^ACB+45+ABC=(90+45+45)+(^BAC+^ACB+^ABC)=180+180=360 (Tổng các góc trong của 1 tg bằng 180 độ)

Câu c:

Nối M với N; M với K

^MAN=90+^BAC

^MBK=360-(^IBM+^KBI); mà ^KBI=^ICN (c/m trên) = 45+^ACB

=> ^MBK=360-(45+^ABC+45+ACB)=270-(^ABC+^ACB)=180-(^ABC+^ACB)+90=90+^BAC

=> ^MAN=^MBK=90+^BAC

Xét hai tg AMN và tg BMK có

^MAN=^MBK (1)

MA=MB (do tg ABM vuông cân tại M) (2)

Do tứ giác BKCN là hình bình hành => BK=NC mà NC=AN (do tg ACN vuông cân tại N)=> BK=AN (3)

Từ (1); (2) và (3) => tg AMN=tg BMK (c.g.c)

=> MK=MN

Xét tg MKN có MK=MN => tg MKN cân tại M 

mà IK=IN => MI là trung tuyến => MI đồng thời là đường cao, Đường phân giác ^KMN(trong tg cân đường trung tuyến từ đỉnh tg cân đồng thời là đường cao và đường phân giác)

=> MI vuông góc IN (*) và ^KMI=^NMI và ^MKI=^MNI

+ mà ^MKI=^BKI+^BKM; ^BKI=^CNI (góc so le trong); ^BKM=^MNA (tg AMN=tg BMK)

=> ^MKI=^CNI+^MNA

^KMI=^NMI =90-^MKI=90-(^CIN+^MNA) Mà ^MNI=90-(^CNI+^MNA) => ^MNI=^NMI (**)

Từ (*) và (**) => tg MIN vuông cân tại I

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

30 tháng 5 2020

em chịu

  bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IEbài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HNbài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt...
Đọc tiếp

 

 

bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE

bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN

bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD

bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ

bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC

anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.

0
6 tháng 7 2019

A B C E M

Cm: a) Xét t/giác AMB và t/giác CME

có: AM = MC (gt)

  BM = ME (gt)

  \(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)

=> t/giác AMB = t/giác CME (c.g.c)

b) Ta có: AB < BC (cgv < ch)

Mà AB = CE (vì t/giác AMB = t/giác CME)

=> CE < BC

c) Ta có: CE < BC (cmt)

=> \(\widehat{MBC}< \widehat{MEC}\) (quan hệ giữa góc và cạnh đối diện)

Mà \(\widehat{MEC}=\widehat{ABM}\) (vì t/giác AMB = t/giác CME)

=> \(\widehat{ABM}>\widehat{MBC}\)

d) Xét t/giác AME và t/giác CMB

có: AM = MC (gt)

  ME = MB (gt)

  \(\widehat{AME}=\widehat{CMB}\)(đối đỉnh)

=> t/giác AME = t/giác CMB (c.g.c)

=> \(\widehat{CBM}=\widehat{MEA}\) (2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AE // BC (Đpcm)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0