K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

3 tháng 10 2016

Hai câu còn lại bạn tự làm nhé :)

3 tháng 10 2016

1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Suy ra MIN A = \(-\sqrt{2}\)khi  \(x=y=z=-\frac{\sqrt{2}}{3}\)

23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)

13 tháng 11 2019

Đặt: \(a=\frac{2}{1-\sqrt[3]{2}}\)

<=> \(\left(1-\sqrt[3]{2}\right)a=2\)

<=> \(a-2=\sqrt[3]{2}a\)

<=> \(\left(a-2\right)^3=\left(\sqrt[3]{2}a\right)^3\)

<=> \(a^3-6a^2+12a-8=2a^3\)

<=> \(a^3+6a^2-12a+8=0\)

Vậy phương trình ẩn x cần tìm là: \(x^3+6x^2-12x+8=0\)

9 tháng 8 2016

Ta có:

\(x=\sqrt{2}+\sqrt{3}\)

nên  \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\)  \(x^2=5+2\sqrt{6}\)

\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)

\(\Leftrightarrow\)  \(x^4-10x^2+25=24\)

hay   \(x^4-10x^2+1=0\)

Đa thức  \(a^4-10a^2+1=0\)  là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\)  làm nghiệm