Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
a) (x+2)(x-3) <0 \(\Leftrightarrow\)x+2>0 , x-3 <0 hoặc x+2<0 , x-3 >0 ( loại)
\(\Leftrightarrow\)-2<x<3
b) \(\left(x-1\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow\)x-1\(\ge\)0 , x-2 \(\ge\)0 hoặc x-1 \(\le0\), x-2 \(\le0\)
\(\Leftrightarrow\)\(1\le x\)hoặc \(x\ge2\)
c) ta có \(x^2+1>0\)\(\Rightarrow\)x+2 >0 \(\Leftrightarrow\)x>-2
a)
x | -1 | 3/2 |
x+1 | - 0 + | | + |
x-3/2 | - | - | 0 + |
(x+1)(x-3/2) | + 0 - | 0 + |
Vậy (x+1)(x-3/2)<0 khi -1<x<3/2
a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)
+ \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)
+ \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)
Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)
b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)
+ \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )
+ \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)
Vậy \(-2< x< -\frac{2}{3}\)
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
a) Điều kiện: \(x\ne-5\)
- Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
- Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
- Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.
Nghiệm của BPT là -5 <x <-3.
b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)
Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\) (loại)
Vậy \(-1< x< 2\)
\(\left(x-2\right)\left(\frac{x+2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\\frac{x+2}{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\\frac{x+2}{3}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -2\end{cases}}\)
Đến đây bạn tự xét rồi Vậy nha
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{cases}\Rightarrow-1< x< 2\left(KTM\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\Rightarrow x=0;1}\)