K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

                       A B C H 20 cm 9cm 16 cm

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :

\(\Rightarrow\)AC2 = HC2 + AH2

\(\Rightarrow\)202  = 162 + AH2

\(\Rightarrow\)AH2 = 400 - 256

\(\Rightarrow\)AH2 = 144

\(\Rightarrow\)AH = 12 (cm)

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :

\(\Rightarrow\)AB2 = AH2 + HB2

\(\Rightarrow\)AB2 = 122 + 92

\(\Rightarrow\)AB2 = 225

\(\Rightarrow\)AB   = 15 (cm)

Vậy AB = 15 cm; AH = 12 cm

31 tháng 1 2020

cảm ơn bạn rất nhiều!

Giúp mình với !!! vẽ hình giúp mình với nha !! Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tínha) Độ dài cạnh ABb) Chu vi tam giác ABCBài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =12cm; HB = 5cma) Tính độ dài cạnh ABb) Tính chu vi tam giác ABCBài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC làtam giác gì ? Vì sao ?Bài 4: Cho tam giác ABC vuông tại A, có B 60...
Đọc tiếp

Giúp mình với !!! vẽ hình giúp mình với nha !! yeu

Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tính
a) Độ dài cạnh AB
b) Chu vi tam giác ABC
Bài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =
12cm; HB = 5cm
a) Tính độ dài cạnh AB
b) Tính chu vi tam giác ABC
Bài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC là
tam giác gì ? Vì sao ?
Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác của góc
B cắt AC tại D. Kẻ DE vuông góc với BC (EBC) . Chứng minh:
a) ABD = EBD.
b) ABE là tam giác đều.
c) AEC cân.
d) Tính độ dài cạnh AC.
Bài 5: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( HBC )
a) Chứng minh: AHB =  AHC
b) Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh  ABM
cân
d) Chứng minh BM // AC
Bài 6: Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K.
Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) So sánh AE và EC
e) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Bài 7: Cho ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh:  ABC cân.
b) Chứng minh    AHB AHC, từ đó chứng minh AH là tia phân giác của góc
A.
c) Từ H vẽ HM  AB ( ) M AB  và kẻ HN  AC ( ) N AC  . C/m:  BHM =  HCN
d) Tính độ dài AH.
e) Từ B kẻ Bx  AB, từ C kẻ Cy  AC chúng cắt nhau tại O. Tam giác OBC là
tam giác gì? Vì sao?

1
11 tháng 3 2022

bạn đăng tách ra nhé

 Bài 1 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=9cm\)

Chu vi tam giác ABC là 41 + 40 + 9 = 90  cm 

13 tháng 8 2016

a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)

                          \(BC^2=25^2=625\)

=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)

b)Xét ΔABH vuông tại H(gt)

=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)

=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)

=>HB =16

Có BC=BH+HC

=>HC=BC-BH=25-16=9

 

13 tháng 8 2016

A B C H

a) Xét \(\Delta ABC \) có:

\(BC^2=25^2=625\)

\(AB^2+AC^2=20^2+15^2=625\)

\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)

\(\Rightarrow\)\(\Delta ABC\) vuông tại  A.

b) Xét \(\Delta ABH\) có: \(AH \perp BC\)

\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)

\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)

\(\Rightarrow BH^2=20^2-12^2\)

\(BH^2=256\)

\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)

 

Ta có:

\(BH+HC=BC\) (H nằm giữa B và C)

\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)

\(\Rightarrow HC=25-16\)

\(HC=9\left(cm\right)\)

 

17 tháng 7 2016

a)ta co : AB^2  + AC^2 = 20^2 +15^2 = 400 + 225 = 625 (cm)

BC = 25^2 = 625 (cm)

=> điều phải chứng minh

b) ta co : HC^2+HA^2 =AC^2

CH^2 = 15^2-12^2= 81cm

=> CH = 9cm

Lai co : 

AH^2+BH^ = AB^2

12^2+BH^2 =20^2

144 + BH^2 = 400

BH^2 =256

=> BH =16cm

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

18 tháng 4 2019

Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))

Tam giác ABC vuông tại A

Định lí Pytago: \(BC^2=AB^2+AC^2\)

Suy ra          \(10^2=6^2+AC^2\)

         =>      AC= 8 (cm)

Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)
 

18 tháng 4 2019

Vâng. Dễ thế đấy thì làm sao ? : )

8 tháng 5 2017

A B C H 20 cm 12 cm 5 cm

Áp dụng định lý Pi ta go vào tam giác AHB ,có:

\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)

Áp dụng định lý Pi ta go vào tam giác AHC ,có:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)

Chu vi tam giác ABC là:

\(13+20+5+16=54\left(cm\right)\)

5 tháng 2 2022

=54 nha

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@