Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
62 . 58 = (60 + 2)(60 - 2) = 60\(^2\) - 2\(^2\) = 3600 - 4 = 3596
199\(^2\) = (200 -1)\(^2\) = 200\(^2\) - 2.200.1 + 1\(^2\) = 40 000 - 400 + 1 = 39601
499\(^2\) = (500 - 1)\(^2\) = 500\(^2\) - 2.500.1 + 1\(^2\) = 250 000 - 1000 + 1 = 249 001
299 . 301 = (300 - 1)(300 + 1) = 300\(^2\) - 1\(^2\) = 90 000 - 1 = 89 999
Học tốt
Đúng thì k cho mk nhé
Trả lời:
+, \(62.58=\left(60+2\right)\left(60-2\right)=60^2-2^2=3600-4=3596\)
+, \(199^2=\left(200-1\right)^2=200^2-2.200.1+1^2=40000-400+1=39601\)
+, \(499^2=\left(500-1\right)^2=500^2-2.500.1+1^2=250000-1000+1=249001\)
+, \(299.301=\left(300-1\right)\left(300+1\right)=300^2-1=90000-1=89999\)
a, (452 - 2.40.45 + 402) - 152
= ( 45 - 40 )2 - 152
= 52 - 152 = ( 5 - 15 )( 5 + 15 )
= -200
b, 13 . 4 . 13 .11 - 13 . 4 . 13 . 3 - 32
= 132 . 44 - 132 . 12 - 32
= 132 ( 44 -12 ) - 32
= 32 ( 132 - 1 )
= 32 . ( 13 - 1 )( 13 + 1 )
= 32 . 12 . 14
= 5376
\(45^2+40^2-15^2-80\cdot45\)
\(=\left(45^2-2\cdot45\cdot40+40^2\right)-15^2\)
\(=\left(45-40\right)^2-15^2\)
\(=15^2-15^2\)
\(=0\)
\(52\cdot143 -52\cdot39-8\cdot4\)
\(=7436-2028-32\)
\(=5408-32\)
\(=5440\)
b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca
=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)
<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca
<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0
<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0
<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))
<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a
<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c
=>a=b=c (đpcm)
a) Theo đề bài: \(a^2+b^2=ab\)
=>\(a^2+b^2-ab=0\)
=>\(a^2-2ab+b^2+ab=0\)
=>\(\left(a-b\right)^2+ab=0\)
Vì \(\left(a-b\right)^2\ge0\) để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)
(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)
b)\(a^2+b^2+c^2=ab+bc+ca\)
=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)
<=>a-b=b-c=a-c=0
<=>a=b=c (đpcm)
=\(\left(2-1\right)\left(2+1\right)\left(2^2-1\right)....\left(2^{20}-1\right)\) +1
=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{20}+1\right)+1\)
=\(\left(2^4-1\right)\left(2^4+1\right)....\left(2^{20}+1\right)+1\)
=.....
=\(\left(2^{20}-1\right)\left(2^{20}+1\right)+1\)
=\(2^{40}-1+1\)
=\(2^{40}\)
Chuc ban hoc tot
Sai rồi, nếu mũ là 32 thì bài này làm thế đc chứ mũ 20 thì ko làm như này được
\(4x^2-4\)
\(=4\left(x^2-1\right)\)
\(=4\left(x-1\right)\left(x+1\right)\)
a) \(a^4+b^4\)
\(=\left(a^2\right)^2+\left(b^2\right)^2\)
\(=\left(a^2-b^2\right).\left(a^2+b^2\right)\)
b) Tương tự
c) \(a^5+b^5\)
\(=\left(\sqrt{a}^5\right)^2+\left(\sqrt{b}^5\right)^2\)
\(=\left(\sqrt{a}^5+\sqrt{b}^5\right).\left(\sqrt{a}^5-\sqrt{b}^5\right)\)
\(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
hk
tốt
bÀI 3
\(A=\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)=4x-3\left(x^2-1\right)=-3x^2+4x+3\)
\(B=\left(x+y\right)^2+\left(x-y\right)^2=2x^2+2y^2\)
bài 4
\(a.4x^2-12xy+9y^2=\left(2x-3y\right)^2=\left(2\times36-3\times24\right)^2=0\)
\(b.x^4+6x^2+9=\left(x^2+3\right)^2=\left(\frac{1}{9}+3\right)^2=\left(\frac{28}{9}\right)^2\)
(28/9)căn 2