Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a) Gọi 3 số đó là a ;a+1;a+2
Ta có: a+a+1+a+2=3a+3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3
b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4 =5a+5
5 chia hết cho 5 => 5a chia hết cho 5
=> Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Câu 2 :Tụ làm nhé , mk chịu lun à
n=12+13=25
25:1;25:5
Nhưng: 25 không chia hết cho 2; cho 4; cho 6; cho 8; cho 10;...
b10:
1.\(A=\left(\frac{999-1}{2}+1\right).\frac{999+1}{2}=250000\)
2. \(B=\left(1+3+...+2017\right)-\left(2+4+...+2016\right)\)
\(=2017.\frac{2017+1}{2}-\left(\frac{2016-2}{2}+1\right).\frac{2016+2}{2}\)
đến đây bạn bấm máy đi nhé!
3. \(C=3+3^2+3^3+...+3^{99}\left(1\right)\)
Nhân hai vế của (1) vs số 3 ta được:
\(3C=3^2+3^3+...+3^{100}\left(2\right)\)
Lấy (2)-(1) theo vế ta được: \(3C-C=3^{100}-3\)
=> C=\(\frac{3^{100}-3}{2}\)
4. Làm giống hết câu 3 luôn nhé, chỉ là nhân với 4 thôi.
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
B1 :
Vì 2^4 = 16 chia hết cho 16
=> A chia hết cho 16
Vì 5^3 = 125 chia hết cho 25
=> A chia hết cho 25 (1)
A chia hết cho 16 => A chia hết cho 4 (2)
Từ (1) và (2) => A chia hết cho 100 ( vì 4 và 25 là 2 số nguyên tố cùng nhau )
Vì 2^4 chia hết cho 16
5^3 chia hết cho 25
=> A chia hết cho 16.25 = 400
=> A chia hết cho 40
Mà 7^8 chia hết cho 7 => A chia hết cho 7
=> A chia hết cho 280 ( vì 40 và 7 là 2 số nguyên tố cùng nhau )
k mk nha
Bài 1:
Để A chia hết cho 3 thì 48+x chia hết cho 3
hay x chia hết cho 3
Để A không chia hết cho 3 thì x+48 không chia hết cho 3
hay x không chia hết cho 3
Bài 2:
a=24k+10=2(12k+5) chia hết cho 2
a=24k+10=24k+8+2=4(6k+2)+2 không chia hết cho 4
1. Cho tổng A = 12+15+21+x với x \(\in\) \(ℕ\). Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
- Để A chia hết cho 3 thì x chia hết cho 3.
- Để A không chia hết cho 3 thì x không chia hết cho 3.
2. Khi chia số tự nhiên a cho 24, ta đc số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
3. Đề thiếu
a chia hết cho 2 vì 24 và 10 đều chia hết cho 2
a không chia hết cho 4 vì 24 chia hết cho 4 nhưng 10 không chia hết cho 4
a, để 3a12b chia hết cho 15
=> 3a12b chia hết cho 3 và 5
=> b có thê bằng 0 hoặc 5
*với b=0 => 3a12b=3a120, để 3a120 chia hết cho 3 => 3+a+1+2+0 chia hết cho 3 hay 6+a chia hết cho 3
vì a là chữ số nên a= 3; 6; 9
ta có kết quả: 36120, 33120, 39120
* với b=5=> 3a12b= 3a125
để 3a125 chia hết cho 3 => 3+a+1+2+5 chia hết cho 3 hay 11+a chia hết cho a
vì a là chữ số => a= 1;4;7
ta có kết quả: 31125; 34125; 37125
chỉ được k một lần thôi