K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VP
0
PD
0
LD
25 tháng 8 2017
1)x(x2 - 19 - 30)
2)x(x2 - 7 - 6)
3)x(x2 + 4x - 7 - 10)
( 4 tích mình làm tiếp 3 câu cuối)
QD
11 tháng 7 2017
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
d)Áp dụng BĐT AM-GM
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+4\ge2\sqrt{4y^2}=4y\)
\(z^2+9\ge2\sqrt{9z^2}=6z\)
Nhân theo vế ta có:
\(VT=\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x\cdot4y\cdot6z=48xyz=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
e)Áp dụng BĐT AM-GM ta có:
\(x+1\ge2\sqrt{x}\)
\(y+1\ge2\sqrt{y}\)
\(x+y\ge2\sqrt{xy}\)
Nhân theo vế ta có:
\(VT=\left(x+1\right)\left(y+1\right)\left(x+y\right)\ge2\sqrt{x}\cdot2\sqrt{x}\cdot2\sqrt{xy}=8xy=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+1=2\sqrt{x}\\y+1=2\sqrt{y}\\x+y=2\sqrt{xy}\left(x+y\ge0\right)\end{matrix}\right.\)\(\Rightarrow x=y=0\)
mấy câu còn lại áp dụng HĐT thôi, khá dễ !!