Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B