Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(\Delta'=(-m)^2-(2m-3)=(m-1)^2+2>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm pb với mọi $m$
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-3\end{matrix}\right.\)
Khi đó: \(A=x_1^2(1-x_2^2)+x_2^2(1-x_1^2)\)
\(=(x_1^2+x_2^2)-2(x_1x_2)^2\)
\(=(x_1+x_2)^2-2x_1x_2-2(x_1x_2)^2\)
\(=4m^2-2(2m-3)-2(2m-3)^2\)
\(=-4m^2+20m-12=-(2m-5)^2+13\)
Vì \((2m-5)^2\geq 0\Rightarrow A\leq 0+13=13\)
Vậy $A$ đạt max bằng $13$ khi \((2m-5)^2=0\Leftrightarrow m=\frac{5}{2}\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+6=\left(m-1\right)^2+5>0\forall m\)
Vậy phương trình trên luôn có hai nghiệm phân biệt \(x_1;x_2\)
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-5\end{cases}}\)
Khi đó \(x_1^2+x_2^2-\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-2x_1x_2\)
\(=\left(2m-2\right)^2-\left(2m-2\right)-2\left(2m-5\right)=4m^2-14m+16\)
\(=\left(2m-\frac{7}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
Vậy GTNN của biểu thức trên là \(\frac{15}{4}\) khi \(m=\frac{7}{4}.\)
phải là (m-1)^2-(2m-5)= m^2-4m+6 chứ có gì đó sai sai
hệ thức vi ét và biệt thức denta để làm gì hả bạn ?
do` bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm ,
1) pt có 2 nghiệm pb <=> \(\Delta=16-4\left(-m^2\right)=16+4m^2>0\)=> pt luôn có 2 nghiệm phân biệt với mọi m
2) vì là giá trị tuyệt đối => A>=0 => Min A=0 <=> \(x1^2-x2^2=0\Leftrightarrow x1=x2\)
=> pt có 1 nghiệm kép. mà biết thức đenta luôn >0 => k tìm đc giá trị nhỏ nhất của A
Đen-ta phẩy = -(m-1)2 - (m2 - m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m
Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0
\(\Leftrightarrow\) m \(\le\) 2
Theo ht Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)
Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2
= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)+ \((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5
= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4
Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))
Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4
MÌNH GIẢI SAI CHỔ NÀO BẠN THÔNG CẢM NHA! ^.^ !!