K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

<=> \(\dfrac{x+2}{x-2}\)-\(\dfrac{1}{x}\)=\(\dfrac{2}{x\left(x-2\right)}\)

<=> \(\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)

ok, ở đây đã có mẫu chung rồi, em cứ vậy làm tiếp thôi :D

31 tháng 1 2019

\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\) (ĐKXĐ: \(x\ne0;x\ne2\))

\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)

\(\Leftrightarrow x^2+2x-x+2=2\)

\(\Leftrightarrow x^2+x+2-2=0\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow S=\left\{-1\right\}\)

11 tháng 4 2018

\(\dfrac{x^2-2x-4}{x^2-2x-3}>1\)

\(\Leftrightarrow\dfrac{x^2-2x-4}{x^2-2x-3}-1>0\)

\(\Leftrightarrow\dfrac{x^2-2x-4-x^2+2x+3}{x^2-3x+x-3}>0\)

\(\Leftrightarrow\dfrac{-1}{\left(x-3\right)\left(x+1\right)}>0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\end{matrix}\right.\)

TH1 : vô lý

Vậy \(-1< x< 3\) thì \(\dfrac{x^2-2x-4}{x^2-2x-3}>1\)

11 tháng 4 2018

\(\dfrac{x^2-2x-4}{x^2-2x-3}>1\)

\(\Leftrightarrow x^2-2x-4>x^2-2x-3\)

\(\Leftrightarrow x^2-x^2-2x+2x>-3+4\)

\(\Leftrightarrow0x>1\) (vô lí)

Vậy bpt vô nghiệm

16 tháng 1 2019

2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)

<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)

<=>9x-6=2-4x

<=>9x+4x=2+6

<=>13x=8

<=>x=\(\dfrac{8}{13}\)

16 tháng 1 2019

1.a)2(x-0,5)+3=0,25(4x-1)

<=>2x-1+3=x-1phần4

<=>2x-x=-1/4+1-3

<=>x=-3/4

6 tháng 2 2019

undefinedundefined

6 tháng 2 2019

thanh niên thiếu hết đkxđ :v

10 tháng 4 2017

a)

\(\left(a\right)\Leftrightarrow\dfrac{x+1}{x-1}\le0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\x-1\ge0\end{matrix}\right.\end{matrix}\right.\)

(I) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x< 1\end{matrix}\right.\) \(\Rightarrow-1\le x< 1\)

(II)\(\Rightarrow\left\{{}\begin{matrix}x\le-1\\x>1\end{matrix}\right.\) vô nghiệm

Kết luận ;\(-1\le x< 1\)

\(\left(b\right)\Leftrightarrow\dfrac{2x+3}{5x-2}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3\ge0\\5x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3\le0\\5x-2< 0\end{matrix}\right.\end{matrix}\right.\)

(I)\(\Rightarrow x\le-\dfrac{3}{2}\)

(II)\(\Rightarrow x>\dfrac{2}{5}\)

Kết luận nghiệm \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>\dfrac{2}{5}\end{matrix}\right.\)

7 tháng 5 2019

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x^2+3}{x^2-2x}\)

<=> \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x^2+3}{x\left(x-2\right)}\)

<=> \(\frac{x\left(x+2\right)-x+2}{x\left(x-2\right)}=\frac{x^2+3}{x\left(x-2\right)}\)

=> x2+2x-x+2=x2+3

<=>x=3

3 tháng 2 2019

Câu a)

Giải phÆ°Æ¡ng trình,(x + 1)/2004 + (x + 2)/2003 = (x + 3)/2002 + (x + 4)/2001,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

3 tháng 2 2019

b) x-45/55 + x-47/53 = x-55/45 + x-53/47
<=>x-45/55 -1 + x-47/53 -1= x-55/45 -1 + x-53/47 - 1
<=>x-100/55 + x-100/53 = x-100/45 + x-100/47
<=>(x-100)(1/55+1/53-1/45-1/47)=0
<=>x-100=0
<=>x=100

Vậy x = 100

19 tháng 12 2017

Bài 2 : Phân tích đa thức thành nhân tử

a) \(8x^2-2\)

\(=2\left(4x^2-1\right)\)

\(=2.\left(2x-1\right)\left(2x+1\right)\)

b) \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3+y\right)\left(x-3-y\right)\)

19 tháng 12 2017

1. Tính giá trị biểu thức :

\(Q=x^2-10x+1025\)

\(Q=\left(x^2-2.x.5+25\right)+1000\)

\(Q=\left(x-5\right)^2+1000\)

Thay x=1005 vào biểu thức trên ta có :

\(Q=\left(1005-5\right)^2+1000\)

\(Q=1000000+1000\)

\(Q=1001000\)

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3