Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}1-x=0\\y-\frac{2}{3}=0\\x+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-0=1\\y=0+\frac{2}{3}=\frac{2}{3}\\z=0-1=-1\end{cases}}}\)
Vậy \(x=1,y=\frac{2}{3},z=-1\)
b) \(\left|\frac{1}{4}-x\right|+\left|x+y+z\right|+\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}-x=0\\x+y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-0=\frac{1}{4}\\x+y+z=0\\y=0+\frac{2}{3}=\frac{2}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\z=0-\frac{1}{4}-\frac{2}{3}=\frac{-11}{12}\\y=\frac{2}{3}\end{cases}}}\)
Vậy \(x=\frac{1}{4},y=\frac{-11}{12},z=\frac{2}{3}\)
Câu 2:
a: Ta có: \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{378}{395}\\z=2004\end{matrix}\right.\)
b: \(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{3}{2}\right|+\left|x-y-z-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\\x-y-z-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{3}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)
a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=0\) \(\Rightarrow|y-\frac{1}{5}|=0\) \(\Rightarrow|x+y+z|=0\)
\(\Rightarrow x+\frac{3}{4}=0\) \(\Rightarrow y-\frac{1}{5}=0\) \(\Rightarrow x+y+z=0\)
\(x=\frac{-3}{4}\) \(y=\frac{1}{5}\) thay x=-3/4; y=1/5 vào biểu thức trên
ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)
\(z=0-\frac{-3}{4}-\frac{1}{5}\)
VẬY X=-3/4; Y=1/5; Z=11/20
B) \(|3x-4|+\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=0\) \(\Rightarrow\left|3y-5\right|=0\)
\(3x-4=0\) \(3y-5=0\)
\(3x=4\) \(3y=5\)
\(x=\frac{4}{3}\) \(y=\frac{5}{3}\)
VẬY X= 4/3; Y=5/3
C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)
MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG
\(\Rightarrow x;y;z\in\varnothing\)
d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=0\) \(\Rightarrow\left|3-y\right|=0\)
\(x+\frac{1}{5}=0\) \(3-y=0\)
\(x=\frac{-1}{5}\) \(y=3\)
VẬY X= -1/5; Y=3
CHÚC BN HỌC TỐT!!!!!!!
Ta có :
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)
Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)
\(\left|\frac{15}{32}-x\right|\ge0;\left|\frac{4}{25}-y\right|\ge0;\left|z-\frac{14}{31}\right|\ge0\) với mọi x, y, z
=> \(\left|\frac{15}{32}-x\right|+\left|\frac{4}{25}-y\right|+\left|z-\frac{14}{31}\right|\ge0\)
Vì thế nên em kiểm tra lại đê bài nhé dấu \(\le\)hay dấu \(< \)
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
a. Vì \(\left|x+\frac{1}{2}\right|\ge0\forall x;\left|y-\frac{3}{4}\right|\ge0\forall y;\left|z-1\right|\ge0\forall z\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> | x + 1/2 | = 0 ; | y - 3/4 | = 0 ; | z - 1 | = 0
<=> x = - 1/2 ; y = 3/4 ; z = 1
b. Vì \(\left|x-\frac{3}{4}\right|\ge0\forall x;\left|\frac{2}{5}-y\right|\ge0\forall y\left|x-y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> | x - 3/4 | = 0 ; | 2/5 - y | = 0 ; | x - y + z | = 0
<=> x = 3/4 ; y = 2/5 ; z = - 7/20
a) Ta có \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
Vậy x = -1/2 = y = 3/4 ; z = 1
b) Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)
Vậy x = 3/4 ; y = 2/5 ; z = -7/20