Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
a) \(\sqrt{3-2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
b) \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
c) \(\sqrt{7-4\sqrt{3}}=\sqrt{3-4\sqrt{3}+4}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
d) \(\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}=\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
e) \(\sqrt{28-10\sqrt{3}}=\sqrt{25-10\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
f)) \(\sqrt{46+6\sqrt{5}}=\sqrt{45+2\sqrt{45}+1}=\sqrt{\left(3\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)
\(a,\sqrt{3-2\sqrt{2}}\)
\(\sqrt{\sqrt{2}^2-2\sqrt{2}+1}\)
\(\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(b,\sqrt{4-2\sqrt{3}}\)đề này mới tính đc
\(\sqrt{\sqrt{3}^2-2\sqrt{3}+1}\)
\(\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
\(c,\sqrt{7-4\sqrt{3}}\)
\(\sqrt{2^2-4\sqrt{3}+\sqrt{3}^2}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
\(d,\sqrt{11-6\sqrt{2}}\)
\(\sqrt{3^2-6\sqrt{2}+\sqrt{2}^2}\)
\(\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(\left|3-\sqrt{2}\right|=3-\sqrt{2}\)
\(e,\sqrt{28-10\sqrt{3}}\)
\(\sqrt{5^2-10\sqrt{3}+\sqrt{3}^2}\)
\(\sqrt{\left(5-\sqrt{3}\right)^2}\)
\(\left|5-\sqrt{3}\right|=5-\sqrt{3}\)
\(f,\sqrt{46+6\sqrt{5}}\)
\(\sqrt{\left(3\sqrt{5}\right)^2+6\sqrt{5}+1}\)
\(\sqrt{\left(3\sqrt{5}+1\right)^2}\)
\(\left|3\sqrt{5}+1\right|=3\sqrt{5}+1\)
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)
\(=1-\sqrt{2}+\sqrt{2}+3\)
\(=4\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-2+\sqrt{3}-1\)
\(=2\sqrt{3}-3\)
F=1.41....
Trước hết ta sẽ giải quyết phần \(\sqrt{5-2\sqrt{3-\sqrt{3}}}\)
ta có công thức rút gọn sau: \(S+_-2\sqrt{P}\Rightarrow x^2-Sx+P\Leftrightarrow x_1=a;x_2=b\Rightarrow S+2\sqrt{P}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\sqrt{5-2\sqrt{3-\sqrt{3}}}\Rightarrow x^2-5x+3\sqrt{3}=0\left(1\right)\)
\(\left(a=1;b=-5;c=3-\sqrt{3}\right)\)
\(\Delta=b^2-4ac=\left(-5\right)^2-4.1.\left(3-\sqrt{3}\right)=13+4\sqrt{3}>0\)
\(\sqrt{\Delta}=\sqrt{13+4\sqrt{3}}=\sqrt{\left(2\sqrt{3}+1\right)^2}=2\sqrt{3}+1\)
Phương trình (1) có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-5\right)+2\sqrt{3}+1}{2.1}=3+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-5\right)-\left(2\sqrt{3}-1\right)}{2.1}=2-\sqrt{3}\)
\(\Rightarrow\sqrt{5-2\sqrt{3-\sqrt{3}}}=\sqrt{\left(\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}=\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(F=\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(\Leftrightarrow F=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
Nhân cả tử và mẫu của hai căn với căn 2
Từ đó ta sẽ được hằng đẳng thức ở tử và rút gọn mất căn:
\(\Leftrightarrow F=\frac{\sqrt{3}+1}{\sqrt{2}}-\frac{\sqrt{3}-1}{\sqrt{2}}=\sqrt{2}\)