Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi thiếu điều kiện rồi là số thực dương
Ta có (x^2-2xy+y^2+2xy)/x-y
<=>[ (x-y)^2+2] / x-y
Tách ra làm 2 phân số
x-y+ (2/x-y)
Dùng cô-si cho 2 số dương
Thì biểu thức trên sẽ ≥ 2✓(x-y)(2/x-y)
= 2✓2
Vậy cái đề
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Mà: \(a+b\ge2\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\ge2\left(a^3+b^3\right)\)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
=> ĐPCM
Ta có x1x2 = -1
=> x1 = -\(\frac{1}{x_2}\)
=> x1 - x2 = x1 + \(\frac{1}{x_1}\)
x1 > 0 thì
x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2
x1 < 0 thì
x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2
Vậy: |x1-x2| >= 2
Trước khi làm hình như phải cm pt có nghiệm?
( a = 1, b = -m, c = -1)
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(-1\right)\)
\(=m^2+4>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề
Số cộng lại có đủ 14 ko z bạn