K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2015

A B C D O a b c d

+) Dễ có tam giác OAB đồng dạng với tam giác ODC (góc AOB = DOC do đối đỉnh; góc BAC = BDC do góc nội tiếp cùng chắn cung BC)

=> \(\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{DC}=\frac{a}{c}\)

+) Tương tự, tam giác OAD đồng dạng với tam giác OBC (g - g)

=> \(\frac{OA}{OB}=\frac{OD}{OC}=\frac{AD}{BC}=\frac{b}{d}\) 

+) Ta có: \(\frac{OB}{OC}+\frac{OD}{OC}=\frac{a}{c}+\frac{b}{d}=\frac{ad+bc}{cd}\)=> \(\frac{OB+OD}{OC}=\frac{BD}{OC}=\frac{ad+bc}{cd}\Rightarrow\frac{OC}{BD}=\frac{cd}{ad+bc}\) (1)

+) ta có: \(\frac{OA}{OD}=\frac{a}{c};\frac{OA}{OB}=\frac{b}{d}\Rightarrow\frac{OD}{OA}=\frac{c}{a};\frac{OB}{OA}=\frac{d}{b}\)

=> \(\frac{OD}{OA}+\frac{OB}{OA}=\frac{BD}{OA}=\frac{c}{a}+\frac{d}{b}=\frac{bc+ad}{ab}\Rightarrow\frac{OA}{BD}=\frac{ab}{bc+ad}\)(2)

Từ (1)(2) => \(\frac{OC}{BD}+\frac{OA}{BD}=\frac{cd+ab}{ad+bc}\Rightarrow\frac{AC}{BD}=\frac{ab+cd}{ad+bc}\)

 

 

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

6 tháng 6 2020

đề đúng chưa