K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\frac{\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{2+\left|\sqrt{3}+1\right|}{2-\left|\sqrt{3}-1\right|}\)

\(=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}\)(Vì \(\sqrt{3}>1>0\))

\(=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)

NV
3 tháng 9 2020

\(a=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\left(3+\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)

\(=\frac{12+6\sqrt{3}}{6}=2+\sqrt{3}\)

Xét \(A=\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}>0\)

\(A^2=6+2\sqrt{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}=6+2\sqrt{2}\)

\(\Rightarrow A=\sqrt{6+2\sqrt{2}}\)

\(\Rightarrow\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}-\sqrt{6+2\sqrt{2}}=\sqrt{6+2\sqrt{2}}-\sqrt{6+2\sqrt{2}}=0\)

3 tháng 7 2017

a,

\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)

=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)

=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

=\(\sqrt{2}+\sqrt{2}-1\)

=\(2\sqrt{2}-1\)

còn tiếp

3 tháng 7 2017

b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)

=\(6-1+\sqrt{3}-\sqrt{6}\)

=\(5+\sqrt{3}+\sqrt{6}\)

25 tháng 6 2017

1.  \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878

2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036

NHA s1.jpg Vũ Hoàng Thiên An ! ! !

K VÀ KB NHA !

14 tháng 8 2020

Đặt:    \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=>    \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)

=>   \(B^2=14+2\sqrt{49-5}\)

=>   \(B^2=14+2\sqrt{44}\)

=>   \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)

ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ    \(\sqrt{7+2\sqrt{11}}\)    THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!

NẾU SỬA ĐỀ BÀI NHƯ TRÊN:

=>    \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{2}-\sqrt{2}+1\)

=>   \(A=1\)

ĐÓ BÂY GIỜ RA A  = 1 RẤT ĐẸP