Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin3x-sinx+sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2sinx.cosx=0\)
\(\Leftrightarrow sinx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow2sinx.cos\frac{3x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{x}{2}=0\\cos\frac{3x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{3x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{x}{2}=0\\cos\frac{5x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)
c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)
\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
c/
\(\Leftrightarrow sinx+sin3x+sin2x=cosx+cos3x+cos2x\)
\(\Leftrightarrow2sin2x.cosx+sin2x=2cos2x.cosx+cos2x\)
\(\Leftrightarrow sin2x\left(2cosx+1\right)=cos2x\left(2cosx+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sin2x=cos2x=sin\left(\frac{\pi}{2}-2x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\2x=\frac{\pi}{2}-2x+k2\pi\\2x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{3}+k2\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\\\end{matrix}\right.\)
b/
\(\Leftrightarrow sin2x+sin6x-\left(cos5x+cosx\right)=0\)
\(\Leftrightarrow2sin4x.cos2x-2cos3x.cos2x=0\)
\(\Leftrightarrow cos2x\left(sin4x-cos3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin4x=cos3x=sin\left(\frac{\pi}{2}-3x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\4x=\frac{\pi}{2}-3x+k2\pi\\4x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin3x=-cosx\)
\(\Leftrightarrow sin3x=sin\left(x-\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x-\frac{\pi}{2}+k2\pi\\3x=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+\sqrt{3}sinx=0\)
\(\Leftrightarrow sinx\left(2cosx+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{\sqrt{3}}{2}=cos\left(\frac{5\pi}{6}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow\left[{}\begin{matrix}cos2x+1=0\\cos2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow2x=\pi+k2\pi\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
b/
\(\Leftrightarrow cos5x=sin40^0\)
\(\Leftrightarrow cos5x=cos50^0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=50^0+k360^0\\5x=-50^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10^0+k72^0\\x=-10^0+k72^0\end{matrix}\right.\)
a.\(\frac{k\Pi}{2}+\frac{\alpha}{2}\)
b.\(\left\{{}\begin{matrix}x=\frac{1}{4}arcsin\left(\frac{1}{3}\right)+\frac{k\Pi}{2}-\frac{1}{8}\\x=\Pi-\frac{1}{4}arcsin\left(\frac{1}{3}\right)+\frac{k\Pi}{2}-\frac{1}{8}\end{matrix}\right.\)
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
b/
\(\Leftrightarrow sin3x-sinx-sin3x=1\)
\(\Leftrightarrow sinx=-1\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
a/ \(\Leftrightarrow sin3x+sinx-sin2x=0\)
\(\Leftrightarrow2sin2x.cosx-sin2x=0\)
\(\Leftrightarrow sin2x\left(2cosx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=0\\2cosx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)