K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 7 2020

c/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

d/

\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)

\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)

\(\Rightarrow3x-50^0=x+60^0+k180^0\)

\(\Rightarrow x=55^0+k90^0\)

NV
19 tháng 7 2020

a/

\(\Leftrightarrow sinx=2cosx\)

Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:

\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)

\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))

\(\Rightarrow x=a+k\pi\)

b/

\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)

\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)

NV
24 tháng 7 2020

d/

Gần như y hệt câu c

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=2\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)

Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow cos2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow1-2sin^2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)\left(1-2sin\left(x-\frac{\pi}{6}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{6}\right)=0\\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=k\pi\\x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

d/

\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)

\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)

\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
19 tháng 7 2020

c/

\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Rightarrow60^0-x=-30^0+k180^0\)

\(\Rightarrow x=90^0+k180^0\)

d/

\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)

\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)

\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)

NV
19 tháng 7 2020

a/

\(\Leftrightarrow tan2x=-tan40^0\)

\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)

\(\Rightarrow2x=-40^0+k180^0\)

\(\Rightarrow x=-20^0+k90^0\)

b/

\(\Leftrightarrow tan\left(2x-15^0\right)=1\)

\(\Rightarrow2x-15^0=45^0+k180^0\)

\(\Rightarrow x=30^0+k90^0\)

NV
19 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)

\(\Leftrightarrow5tan2x=-5\)

\(\Rightarrow tan2x=-1\)

\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

d/

ĐKXĐ: ...

\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)

\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)

\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
19 tháng 7 2020

a/

\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)

\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)

b/

\(tan\left(2x-15^0\right)=tanx\)

\(\Rightarrow2x-15^0=x+k180^0\)

\(\Rightarrow x=15^0+k180^0\)

NV
25 tháng 7 2020

c/

\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)

\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

d/ ĐKXĐ: ...

\(\Leftrightarrow cot^22x+3.cot2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Leftrightarrow2cos^2x-1+cosx+1=0\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

b/ ĐKXĐ: ...

\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)

\(\Leftrightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow tan^2x-2tanx+1=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

NV
20 tháng 7 2020

\(sin2x=\sqrt{3}cos2x\)

Nhận thấy cos2x=0 ko phải nghiệm, pt tương đương:

\(\frac{sin2x}{cos2x}=\sqrt{3}\Leftrightarrow tan2x=\sqrt{3}\)

\(\Rightarrow2x=\frac{\pi}{3}+k\pi\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

b/

\(cos\left(90^0-x\right)=-sin2x=cos\left(2x+90^0\right)\)

\(\Rightarrow\left[{}\begin{matrix}90^0-x=2x+90^0+k360^0\\90^0-x=-2x-90^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k120^0\\x=-180^0+k360^0\end{matrix}\right.\)

c/ Giống câu a

\(\Leftrightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)