Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
c1 cậu đặt cái trong căn =a
=>pt<=> a^2-2x=2xa-a
c2 cậu đưa về dang a^2=b^2
bài 2 nhé
đặt \(a=\sqrt{x+2}\)
ta có pt<=>
\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)
\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)
Liên hợp:v
a) ĐK: \(x\ge-2\)
PT<=> \(\sqrt{x+5}-2+\sqrt{x+2}-1+2\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x+5}+2}+\frac{x+1}{\sqrt{x+2}+1}+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x+5}+2}+\frac{1}{\sqrt{x+2}+1}+2\right)=0\)
Cái ngoặc to nhìn sơ qua cũng thấy nó >0 :v
Do đó x = -1
Vậy...
P/s: cô @Akai Haruma check giúp em ạ!
Nguyễn Việt Lâm, svtkvtm, Trần Thanh Phương, Phạm Hoàng Hải Anh, DƯƠNG PHAN KHÁNH DƯƠNG, @Akai Haruma
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
1. ĐKXĐ: $x\leq \frac{1}{2}$
PT \(\Leftrightarrow [(x^2-2)-(x-\sqrt{2})]\sqrt{1-2x}=0\)
\(\Leftrightarrow (x-\sqrt{2})(x+\sqrt{2}-1)\sqrt{1-2x}=0\)
\(\Leftrightarrow \left[\begin{matrix} x-\sqrt{2}=0\\ x+\sqrt{2}-1=0\\ \sqrt{1-2x}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
Kết hợp đkxđ suy ra \(\left[\begin{matrix} x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
2. ĐKXĐ: $-1\leq x\leq 1$
Đặt $\sqrt{1+x}=a; \sqrt{1-x}=b(a,b\geq 0)$. Khi đó ta có:
$4a-\frac{a^2+b^2}{2}=\frac{3(a^2-b^2)}{2}+2b+ab=0$
$\Leftrightarrow 2a^2-b^2+ab-4a+2b=0$
$\Leftrightarrow (a+b-2)(2a-b)=0$
Xét 2 TH:
TH1: $a+b-2=0$
$\Leftrightarrow \sqrt{1-x}+\sqrt{1+x}=2$
$\Leftrightarrow 2+2\sqrt{1-x^2}=4$
$\Leftrightarrow \sqrt{1-x^2}=1$
$\Leftrightarrow x=0$ (tm)
TH2: $2a-b=0$
$\Leftrightarrow 2\sqrt{1+x}=\sqrt{1-x}$
$\Leftrightarrow 4(x+1)=1-x$
$\Leftrightarrow x=\frac{-3}{5}$ (tm)
Vậy.........