K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x^2+2x\\x^2-x-2=-x^2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-2=0\\2x^2+x-2=0\end{matrix}\right.\)

hay \(x\in\left\{-\dfrac{2}{3};\dfrac{-1+\sqrt{17}}{4};\dfrac{-1-\sqrt{17}}{4}\right\}\)

c: \(\Leftrightarrow\left[{}\begin{matrix}3x^2+10x+21=x^2-20x-9\\3x^2+10x+21=-x^2+20x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+30x+30=0\\4x^2-10x+12=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{-15+\sqrt{165}}{2};\dfrac{-15-\sqrt{165}}{2}\right\}\)

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

1 tháng 2 2016

3x2+6x+7=3.(x2+2x+1)+4=3.(x+1)2+4 >= 4 

=> căn của nó >=

..................................................... ko thích giải

1 tháng 2 2016

dùng BĐT nha bạn

25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?

 

30 tháng 4 2020

tks ạ

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)

7 tháng 9 2017

do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)

voi dk \(x\ge-1\) ta co 

\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)

b,\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

    \(\Leftrightarrow\left|2x-5\right|+2x=5\)

th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)

th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)

\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)

kl \(x\le\frac{5}{2}\)

c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)

d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)

 =\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)

ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dau = xay ra \(\Leftrightarrow x=-1\)

7 tháng 1 2020

ĐK:....

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)

<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

<=> x + 1 = 0 

<=> x = -1. ( đối chiếu điều kiện )

Kết luận.

26 tháng 11 2020

Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6

=> x = -1