Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3
\(a,\left(6-9x\right)^2=\left(5x-7\right)^2\Leftrightarrow\left|6-9x\right|=\left|5x-7\right|\\ \Leftrightarrow\left[{}\begin{matrix}6-9x=5x-7\\6-9x=-\left(5x-7\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}14x=13\\4x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{14}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(b,\left(1+x\right)^2=\left(x-1\right)^2\Leftrightarrow\left|1+x\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=x-1\\x+1=-\left(x-1\right)\end{matrix}\right.\)\(\Leftrightarrow x=0\).
\(c,\left(3x+1\right)^2-4\left(x-3\right)^2=0\Leftrightarrow\left(3x+1\right)^2=[2\left(x-3\right)]^2\)
\(\Leftrightarrow\left|3x+1\right|=\left|2\left(x-3\right)\right|\Leftrightarrow\left[{}\begin{matrix}3x+1=2\left(x-3\right)\\3x+1=-2\left(x-3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
a)\(-x^2-x+2\)
\(=-\left(x^2+x-2\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{7}{4}\right)\)
\(=-\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\le\frac{7}{4}.Với\forall x\in Z\)
Dấu "=" xảy ra khi
\(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy Max = 7/4 <=> x = -1/2
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
(x2 + 5x + 6)(x2 + 9x + 20) = 24
<=> (x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0
<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0 (1)
Đặt x2 + 7x + 11 = t, ta có:
(1) <=> (t - 1)(t + 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> (t - 5)(t + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\t+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7x+11-5=0\\x^2+7x+11+5=0\end{matrix}\right.\)
<=> (x + 1)(x + 6) = 0 (vì \(x^2+7x+16\ge\dfrac{15}{4}>0\))
<=> x = - 1 hoặc x = - 6
~ ~ ~ ~ ~
x4 - 24x = 32
<=> x4 - 24x - 32 = 0
<=> (x2 - 2x - 4)(x2 + 2x + 8) = 0
<=> \(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\) (vì \(x^2+2x+8\ge7>0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)