Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
Câu a:
\(x^4+3x^2-2x+3=0\)
\(\Leftrightarrow (x^4+2x^2+1)+(x^2-2x+1)+1=0\)
\(\Leftrightarrow (x^2+1)^2+(x-1)^2+1=0(*)\)
Ta thấy: \((x^2+1)^2>0; (x-1)^2\geq 0, \forall x\in\mathbb{R}\)
Do đó \((x^2+1)^2+(x-1)^2+1>0\). Suy ra pt $(*)$ vô nghiệm.
Vậy pt đã cho vô nghiệm.
Câu b:
\(x^4+x^3-3x^2-4x-4=0\)
\(\Leftrightarrow x^4+x^3+x^2-4x^2-4x-4=0\)
\(\Leftrightarrow x^2(x^2+x+1)-4(x^2+x+1)=0\)
\(\Leftrightarrow (x^2+x+1)(x^2-4)=0\)
\(\Leftrightarrow (x^2+x+1)(x-2)(x+2)=0\)
\(\Rightarrow \left[\begin{matrix} x^2+x+1=0\\ x-2=0\\ x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} (x+\frac{1}{2})^2+\frac{3}{4}=0(\text{vô lý})\\ x=2\\ x=-2\end{matrix}\right.\)
Vậy pt có nghiệm $x=\pm 2$
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
tui giải câu a thôi nha
chia phương trình cho \(x^2\)ta có:
\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0
đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)
\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)
*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)mà
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại
*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm x=-1
b) \(x^4+x^3-3x^2-4x-4=0\)
\(\Leftrightarrow x^4+2x^3-x^3-2x^2-x^2-2x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+x^2-2x+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+x+1\right)=0\)
Vì \(x^2+x+1>0\forall x\)( cách c/m mình nói sau )
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
Vậy....
Cách chứng minh :
\(x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Hay \(x^2+x+1>0\forall x\)( đpcm )