K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)

\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

c, ĐK: \(x-2>0\Rightarrow x>2\)

\(2log_5\left(x-2\right)=log_59\\ \Leftrightarrow log_5\left(x-2\right)^2=log_59\\ \Leftrightarrow\left(x-2\right)^2=3^2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5.

d, ĐK: \(x-1>0\Leftrightarrow x>1\)

\(log_2\left(3x+1\right)=2-log_2\left(x-1\right)\\ \Leftrightarrow log_2\left(3x+1\right)\left(x-1\right)=2\\ \Leftrightarrow3x^2-2x-1=4\\ \Leftrightarrow3x^2-2x-5=0\\ \Leftrightarrow\left(3x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm \(x=\dfrac{5}{3}\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) 

ĐK: \(\left\{{}\begin{matrix}2x-4>0\\x-1>0\end{matrix}\right.\Leftrightarrow x>1\)

\(\log_5\left(2x-4\right)+\log_{\dfrac{1}{5}}\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(2x-4\right)-\log_5\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(\dfrac{2x-4}{x-1}\right)=\log_51\\ \Leftrightarrow\dfrac{2x-4}{x-1}=1\\ \Leftrightarrow2x-4=x-1\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy x = 3.

b) ĐK: x > 0

\(\log_2x+\log_4x=3\\ \Leftrightarrow\log_2x+\dfrac{1}{2}\log_2x=3\\ \Leftrightarrow\left(1+\dfrac{1}{2}\right)\log_2x=3\\ \Leftrightarrow\dfrac{3}{2}\log_2x=3\\ \Leftrightarrow\log_2x=2\\ \Leftrightarrow x=4\left(tm\right)\)

Vậy x= 4

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: \(x>-1;x\ne0\)

\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)

e, Điều kiện: \(x>\dfrac{5}{3}\)

\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)

f, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) =  - 2\)

Điều kiện: \(x - 2 > 0 \Leftrightarrow x > 2\)

Vậy phương trình có nghiệm là \(x = 6\).

b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)

Điều kiện: \(\left\{ \begin{array}{l}x + 6 > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 6\\x >  - 1\end{array} \right. \Leftrightarrow x >  - 1\)

Vậy phương trình có nghiệm là \(x = 4\).

15 tháng 8 2023

tham khảo

a)Điều kiện \(3-x>0\) hay \(x< 3\)

\(4-log\left(3-x\right)=3log\left(3-x\right)=1\Leftrightarrow10^1=3-x\)

Vậy nghiệm của phương trình là \(x=2\) thỏa mãn điều kiện

b) Điều kiện \(x+2>0\) và \(x-1>0\) tức là \(x>1\)

\(\left(x+2\right)\left(x-1\right)=2\Rightarrow x^2+x-4=0\)

Vậy pt có nghiệm \(x=\dfrac{-1+\sqrt{17}}{2}\)

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log_{\dfrac{1}{3}}\left(x+1\right)< 2\\ \Leftrightarrow x+1>\dfrac{1}{9}\Leftrightarrow x>-\dfrac{8}{9}\)

Kết hợp với ĐKXĐ, ta được: \(x>-\dfrac{8}{9}\)

b, ĐK: \(x+2>0\Leftrightarrow x>-2\)

\(log_5\left(x+2\right)\le1\\ \Leftrightarrow x+2\le5\\ \Leftrightarrow x\le3\)

Kết hợp với ĐKXĐ, ta được: \(-2< x\le3\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, ĐK: \(x-2>0\Rightarrow x>2\)

\(log_2\left(x-2\right)< 2\\ \Leftrightarrow x-2< 4\\ \Leftrightarrow x< 6\)

Kết hợp với ĐKXĐ, ta được: \(2< x< 6\)

b, ĐK: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)

\(log\left(x+1\right)\ge log\left(2x-1\right)\\ \Leftrightarrow x+1\ge2x-1\\ \Leftrightarrow x\le2\)

Kết hợp với ĐKXĐ, ta được: \(\dfrac{1}{2}< x\le2\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log\left(x+1\right)=2\\ \Leftrightarrow x+1=10^2\\ \Leftrightarrow x+1=100\\ \Leftrightarrow x=99\left(tm\right)\)

b, ĐK: \(\left\{{}\begin{matrix}x-3>0\\x>0\end{matrix}\right.\Rightarrow x>3\)

\(2log_4x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2\left(x^2-3x\right)=2\\ \Leftrightarrow x^2-3x=4\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

c, ĐK: \(x>1\)

\(lnx+ln\left(x-1\right)=ln4x\\ \Leftrightarrow ln\left[x\left(x-1\right)\right]-ln4x=0\\ \Leftrightarrow ln\left(\dfrac{x-1}{4}\right)=0\\ \Leftrightarrow\dfrac{x-1}{4}=1\\ \Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\)

d, ĐK: \(\left\{{}\begin{matrix}x^2-3x+2>0\\2x-4>0\end{matrix}\right.\Rightarrow x>2\)

\(log_3\left(x^2-3x+2\right)=log_3\left(2x-4\right)\\ \Leftrightarrow x^2-3x+2=2x-4\\ \Leftrightarrow x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)

22 tháng 8 2023

a) \(log_2\left(3-2x\right)\) xác định khi \(3-2x>0\) hay \(x< \dfrac{3}{2}\)

b) \(log_3\left(x^2+4x\right)\) xác định khi \(x^2+4x>0\) hay \(x>0\) hoặc \(x< -4\)