\(x^2-x+7=\left|-5x+1\right|\)

2) x2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2019

Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:

a/

\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)

\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

b/

\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)

\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

NV
6 tháng 4 2019

c/

\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

d/

\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

29 tháng 3 2020

1) Ta có : \(4x+20=0\)

=> \(x=-\frac{20}{4}=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

2) Ta có : \(3x+15=30\)

=> \(3x=15\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

3) Ta có : \(8x-7=2x+11\)

=> \(8x-2x=11+7=18\)

=> \(6x=18\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

4) Ta có : \(2x+4\left(36-x\right)=100\)

=> \(2x+144-4x=100\)

=> \(-2x=-44\)

=> \(x=22\)

Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)

5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)

=> \(2x-3+5=4x+12\)

=> \(-2x=10\)

=> \(x=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

29 tháng 3 2020

1) 4x+20=0

\(\Leftrightarrow\) 4x=-20

\(\Leftrightarrow\) x=-5

Vậy pt trên có tập nghiệm là S={-5}

2) 3x+15=30

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

3) 8x-7=2x+11

\(\Leftrightarrow\) 8x-2x=11+7

\(\Leftrightarrow\) 6x=18

\(\Leftrightarrow\) x=3

Vậy pt trên có tập nghiệm là S={3}

4) 2x+4(36-x)=100

\(\Leftrightarrow\) 2x+144-4x=100

\(\Leftrightarrow\) -2x+144=100

\(\Leftrightarrow\) -2x=-44

\(\Leftrightarrow\) x=22

Vậy pt trên có tập nghiệm là S={22}

5) 2x-(3-5x)=4(x+3)

\(\Leftrightarrow\) 2x-3+5x=4x+12

\(\Leftrightarrow\) 2x+5x-4x=12+3

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

6) 3x(x+2)=3(x-2)2

\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)

\(\Leftrightarrow\) 3x2+6x=3x2-12x+12

\(\Leftrightarrow\) 3x2-3x2+6x+12x=12

\(\Leftrightarrow\) 18x=12

\(\Leftrightarrow\) x=\(\frac{2}{3}\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

10 tháng 2 2018

a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)

\(3x^2+10x-8=5x^2-2x+10\)

\(3x^2-5x^2+10x+2x-8-10=0\)

\(-2x^2+12x-18=0\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(\frac{x^2-x-6}{x-3}=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

10 tháng 2 2018

Gin hotaru  

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

21 tháng 1 2018

2. \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow\)\(x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+9x+x-x^2-5x-3x=15-9\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=\dfrac{6}{2}\Rightarrow x=3\)

\(S=\left\{3\right\}\)

21 tháng 1 2018

\(1,5-\left(6-x\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-6+x=12-8x\)

\(\Leftrightarrow x+8x=12-5+6\)

\(\Leftrightarrow9x=13\)

\(\Leftrightarrow x=\dfrac{13}{9}\)

Vậy tập nghiệm của pt là \(S=\left\{\dfrac{13}{9}\right\}\)

\(2,\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt là S = { 3 }

\(3,\dfrac{3\left(5x-2\right)}{4}-2=\dfrac{7x}{3}-5\left(x-7\right)\)

\(\Leftrightarrow\dfrac{9\left(5x-2\right)-24}{12}=\dfrac{28x-60\left(x-7\right)}{12}\)

\(\Rightarrow45x-18-24=28x-60x+420\)

\(\Leftrightarrow45x-28x+60x=420+18+24\)

\(\Leftrightarrow77x=462\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm của pt là S = { 6 }

\(4,3\left(x+1\right)\left(2x+5\right)=3\left(x+1\right)\left(7x-4\right)\)

\(\Leftrightarrow3\left(x+1\right)\left(2x+5\right)-3\left(x+1\right)\left(7x-4\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(2x+5-7x+4\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(-5x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\-5x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{9}{5}\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-1;\dfrac{9}{5}\right\}\)

\(5,\left(x-2\right)^2-\left(3x+1\right)^2+x\left(4x-1\right)=0\)

\(\Leftrightarrow\left(x-2-3x-1\right)\left(x-2+3x+1\right)+x\left(4x-1\right)=0\)

\(\Leftrightarrow\left(-2x-3\right)\left(4x-1\right)+x\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(-2x-3+x\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\-x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{\dfrac{1}{4};-3\right\}\)