Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)
\(\Leftrightarrow5x^3+30x^2+3x+9=0\)
\(\Leftrightarrow x=-5,95...\)
\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)
\(\Leftrightarrow12x^2-47x+26=0\)
<=> (3x - 2)(4x - 13) = 0
<=> x = 2/3 hoặc x = 13/4
c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
1) \(\frac{4x-8}{2x^2+1}=0\)
<=> \(\frac{4\left(x-2\right)}{2x^2+1}=0\)
<=> 4(x - 2) = 0
<=> x - 2 = 0
<=> x = 2
2) \(\frac{x^2-x-6}{x-3}=0\)
<=> \(\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
<=> x + 2 = 0
<=> x = -2
3) xem ở đây Câu hỏi của Vương Thanh Thanh
4) \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> \(\frac{12}{\left(1+3x\right)\left(1-3x\right)}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> 12 = (1 - 3x)2 - (1 + 3x2)
<=> 12 = 1 - 6x + 9x2 - 1 - 6x - 9x2
<=> 12 = -12x
<=> x = -1
5) ĐKXĐ: \(x\ne1,x\ne3\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
<=> \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 5)(x - 3) = (x + 1)(x - 1) - 8
<=> x2 - 3x + 5x - 15 = x2 - x + x - 1 - 8
<=> x2 + 2x - 15 = x2 - 9
<=> x2 + 2x - 15 - x2 = -9
<=> 2x - 15 = -9
<=> 2x = -9 + 15
<=> 2x = 6
<=> x = 3 (ktm)
=> pt vô nghiệm
6) ĐKXĐ: \(x\ne\pm2\)
\(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
<=> \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}+1\)
<=> (x + 1)(x + 2) - 5(x - 2) = 12 + (x - 2)(x + 2)
<=> x2 + 2x + x + 2 - 5x + 10 = 12 + x2 + 2x - 2x - 4
<=> x2 - 2x + 12 = x2 + 8
<=> x2 - 2x + 12 - x2 = 8
<=> -2x + 12 = 8
<=> -2x = 8 - 12
<=> -2x = -4
<=> x = 2 (ktm)
=> pt vô nghiệm
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy phương trình có nghiệm x = 12.
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy phương trình có nghiệm x = 8.
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy x=12 là nghiệm của phương trình
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy x=8 là nghiệm của phương trình
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(\frac{5}{12}=\frac{-2x+1}{4x}\)
\(\Leftrightarrow20x=12\left(-2x+1\right)\)
\(\Leftrightarrow20x=-24x+12\)
\(\Leftrightarrow44x=12\)
\(\Leftrightarrow x=\frac{3}{11}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{11}\right\}\)
\(\left(x-1\right)\left(x+2\right)-3x\left(x+1\right)=-2x^2\)
\(\Leftrightarrow x^2+x-2-3x^2-3x=-2x^2\)
\(\Leftrightarrow-2x^2-2x-2=-2x^2\)
\(\Leftrightarrow-2x-2=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)