K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

20 tháng 1 2019

\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)

\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)

\(\Leftrightarrow2x+3=0\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy ....

b,\(\dfrac{2\left(x+4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\Leftrightarrow\dfrac{10\left(x-4\right)-2\left(3+2x\right)}{20}=\dfrac{20x+4\left(1-x\right)}{20}\)

\(\Leftrightarrow10x-40-6-4x=20x+4\left(1-x\right)\)

\(\Leftrightarrow6x-46=16x+4\)

\(\Leftrightarrow6x-16x=4+46\)

\(\Leftrightarrow-10x=50\Leftrightarrow x=-5\)

Vậy...

c,\(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)

\(\Leftrightarrow\dfrac{8x+3\left(3x-5\right)}{12}=\dfrac{6\left(6x-3\right)-14}{12}\)

\(\Leftrightarrow\dfrac{8x+9x-15}{12}=\dfrac{36x-18-14}{12}\)

\(\Leftrightarrow17x-15=36x-32\)

\(\Leftrightarrow17x-36x=-32-15\)

\(\Leftrightarrow19x=-47\Leftrightarrow x=\dfrac{-47}{19}\)

Vậy...

20 tháng 1 2019

sửa lại c ,

17x-36x=-32-15<=>-19x=-47<=>x=47/19

24 tháng 4 2017

Giải bài 7 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

20 tháng 1 2019

a.

\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)

\(\Leftrightarrow\dfrac{12x+10-\left(10x+3\right)}{4}=\dfrac{8x+4x+2}{4}\)

\(\Leftrightarrow12x+10-10x-3=12x+2\)

\(\Leftrightarrow2x+7=12x+2\)

\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)

Vậy S = {1/2}

b.

\(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(\Leftrightarrow x^2-16-6x+4=x^2-8x+16\)

\(\Leftrightarrow-6x-12=-8x+16\)

\(\Leftrightarrow2x=28\Leftrightarrow x=14\)

Vậy S = {14}

23 tháng 8 2018

c/ đk: x khác 1; x khác -3

\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)

\(\Leftrightarrow4x^2+11x+5=0\)

\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)

\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)

Vậy.........

d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

đk: \(x\ne\pm\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)

\(\Leftrightarrow-102x-9=0\)

\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)

Vậy.........

23 tháng 8 2018

a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)

\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)

\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)

\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)

Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

=> x+ 3 = 0 <=> x= -3

Vậy......

b/ \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)

\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)

=> x + 1 = 0 <=> x = -1

Vậy....