K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

a, Ta có:
2x2-5x+2=0
<=> 2x2-4x-x+2=0
<=> 2x(x-2)-(x-2)=0
<=> (x-2)(2x-1)=0
\(< =>\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\) \(< =>\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{2;\frac{1}{2}\right\}\)
b. \(\frac{1}{2}x^2-2\sqrt{2}x-4=0\)
<=> \(x^2-4\sqrt{2}x-8=0\)
Xét : \(\Delta'=\left(-2\sqrt{2}\right)^2-1.\left(-8\right)\)
=8+8
=16
\(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=2\sqrt{2}+\sqrt{16}\\x=2\sqrt{2}-\sqrt{16}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=2\sqrt{2}+4\\x=2\sqrt{2}-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là: \(S=\left\{2\sqrt{2}+4;2\sqrt{2}-4\right\}\)

4 tháng 4 2017

a) x2 – 8 = 0 ⇔ x2 = 8 ⇔ x = ±√8 ⇔ x = ±2√2

b) 5x2 – 20 = 0 ⇔ 5x2 = 20 ⇔ x2 = 4 ⇔ x = ±2

c) 0,4x2 + 1 = 0 ⇔ 0,4x2 = -1 ⇔ x2 = -: Vô nghiệm

d) 2x2 + √2x = 0 ⇔ x(2x + √2) = 0 ⇔ √2x(√2x + 1) = 0

⇔ x1 = 0 hoặc √2x + 1 = 0

Từ √2x + 1 = 0 => x2 =

Phương trình có 2 nghiệm

x1 = 0, x2 =

e) -0,4x2 + 1,2x = 0 ⇔ -4x2 + 12x = 0 ⇔ -4x(x – 3) = 0

⇔ x1 = 0,

hoặc x2 - 3 = 0 => x2 = 3

Vậy phương trình có 2 nghiệm x1 = 0, x2 = 3



1 tháng 4 2017

Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.

Câu 1: Mình làm mẫu câu a thôi nhé.

a/ \(x^2-2\sqrt{3}x-6=0\)

( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )

\(\Delta=b^2-4ac\)

    \(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)

    \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)

Vậy:..

Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)

( a = 1; b = -2(2m+1); c = 4m^2 + 2 )

\(\Delta=b^2-4ac\)

    \(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)

     \(=4\left(4m^2+4m+1\right)-16m^2-8\)

     \(=16m^2+16m+4-16m^2-8\)

     \(=16m-4\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)

31 tháng 3 2017

ko hỉu

NV
13 tháng 4 2020

a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b/ \(\Delta=9+8=17\)

Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)

c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)

d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)

Bài 1:

Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)

\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)

\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)

\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)

29 tháng 4 2020

Còn 3 câu kia đâu bạn?

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

19 tháng 2 2018

b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)

\(=9x^2-36x+36-4x^2+8x-4\)

\(=5x^2-28x+32\)

\(=\left(x-5\right)\left(5x-8\right)\)

\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)

19 tháng 2 2018

a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)

\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)

\(-3x^2+10x-3=0\)

\(\left(3-x\right)\left(3x-1\right)=0\)

\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)

\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)

10 tháng 11 2019

Câu a thì mình chịu rồi @@ sorry nha

Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?

Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc

Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.

Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@