Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
(1) cho A = 4,25 x(b + 41,53 ) - 125. tim b de A co gia tri =300 . (2)
Bài 2:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(2x-1\right)-5\left(x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3\right)-\left(5x+40\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-43=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;43\right\}\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow9x^2-1-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{1}{3};-2\right\}\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(49-x^2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(7-x\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\4x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-7;2\right\}\)
d, \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{0;2;3\right\}\)
e, \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{4;-4;3-\frac{3}{2}\right\}\)
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy .........
\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
Vậy ..................
\(c,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
\(d,x\left(2x-7\right)-4x+14=0\)
\(\Leftrightarrow2x^2-7x-4x+14=0\)
\(\Leftrightarrow2x^2-11x+14=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
Vậy ............
\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)
\(\Leftrightarrow3x^2-24x+21=0\)
\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy .....................
\(f,x^2-x-\left(3x-3\right)=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ..............
a) \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
\(\Rightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+1\right)=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
b) \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2-24x+9=4x^2-8x+4\)
\(\Leftrightarrow12x^2-16x+5=0\)
Ta có \(\Delta=16^2-4.12.5=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16+4}{12}=\frac{5}{3}\\x=\frac{16-4}{12}=1\end{cases}}\)