Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)
a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)
pt đầu suy ra \(\sqrt{x+3}=2\sqrt{y-1}\)
pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)
Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1
\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)
\(8\sqrt{y+1}+3y-21=0\)
Đặt \(\sqrt{y+1}=t\)
=> y = t2 - 1
=> 8t + 3(t2 -1) -21 =0
3t2 + 8t - 24 = 0
=> t = ...
=> y = t2 - 1
=> \(\sqrt{x+3}=2\sqrt{y-1}\)
=> x =...
b) Trừ hai pt cho nhau ta có:
x2 - y2 = 3(y - x)
(x - y) (x + y + 3) = 0
=> x = y hoặc x + y + 3 = 0
Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm
pt đã cho \(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+x-1=-\left(2x+3\right)\)
\(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+3x+2=0\)
Đặt \(t=\sqrt{x^2+x+2}\left(t\ge0\right)\) pt trở thành
\(t^2-\left(2x+3\right)t+x^2+3x+2=0\) (*)
pt (*) có biệt thức \(\Delta=\left(2x+3\right)^2-4\left(x^2+3x+2\right)=1\)
\(t_1=\frac{2x+3+1}{2}=x+2\) \(\Leftrightarrow\begin{cases}x\ge-2\\\sqrt{x^2+x+2}=x+2\end{cases}\Leftrightarrow x=-\frac{2}{3}}\)
\(t_2=\frac{2x+3-1}{2}=x+1\)
\(\Leftrightarrow\begin{cases}x\ge-1\\\sqrt{x^2+x+2}=x+1\end{cases}\Leftrightarrow x=1}\)
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
b, Ta có : \(x^2-3=\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)-\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}-2x+\sqrt{3}\right)=0\)
=> \(-x\left(x+\sqrt{3}\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x=-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{0,-\sqrt{3}\right\}\)
a, Ta có : \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
=> \(\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
=> \(\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
=> \(\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=\frac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)
Vậy ....