Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) \(x^4+3x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2+\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\))
b) \(x^4+5x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{5}{2}\right)^2=-\frac{11}{4}\) ( vô nghiệm do \(\left(x^2+\frac{5}{2}\right)^2\ge0\ne-\frac{11}{4}\forall x\) )
c) \(x^4-3x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2-2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)
\(\Leftrightarrow\left(x^2-\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2-\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\) )
a) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2+3t+9=0\)
Ta có: \(\Delta=3^2-4.9=-27< 0\)
Vậy phương trình vô nghiệm
b) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2+5t+9=0\)
Ta có: \(\Delta=5^2-4.9=-11< 0\)
Vậy phương trình vô nghiệm
c) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2-3t+9=0\)
Ta có: \(\Delta=3^2-4.9=-27< 0\)
Vậy phương trình vô nghiệm
\(a,-x^3+x^2+4=0\)
\(-\left(x^3-x^2-4\right)=0\)
\(x^3-2x^2+x^2+2x-2x-4=0\)
\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)
\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2+x+2\right)=0\)
Vì \(x^2+x+2>0\left(\forall x\right)\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(2x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)
\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)
\(\Leftrightarrow x=y=0\)
a, <=>(X4 -X3)+(3X3 -3X2)+(8X2-8X)+(12X-12)=0
<=>X3(X-1)+3X2(X-1)+8X(X-1)+12(X-1)=0
<=>(X3+3X2+8X+12)(X-1)=0
<=>[(X3+2X2)+(X2+2X)+(6X+12)](X-1)=0
<=>[(X+2)+X(X+2)+6(X+2)](X-1)=0
<=>(X2+X+6)(X+2)(X-1)=0
Vì X2+X+6=X2+2.X++=(X+)2+ >0
=>(X+2)(X-1)=0
<=>X+2=0 hoặc X-1=0
*X+2=0 <=>X=-2
*X-1=0 <=>X=1
Vậy....................
b, Bạn nên xem lại đầu bài
a) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Vì \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
(x^3-9x^2+27x-27)+(x^2-6x+9)=0
(x-3)^3+(x-3)^2=0
(x-3)^2(x-2)=0
<=>x-3=0 hoặc x-2=0
<=>x=3 hoặc x=2
a, Ta có :
x4+8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
\(\Rightarrow x^2-1=0\Rightarrow x=1\)
\(\Rightarrow x^2+9=0\Rightarrow x=-3\)
b, k bt lm
ths