Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)
Phương trình trên tương đương với:
\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)
Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)
Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)
Vậy ..................................
\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)
\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)
\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)
\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)
\(\sqrt{x}+\sqrt{1-x}=1\)
\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)
\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)
Vậy .............................
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
\(a,Đk:1\le x\le4\)
Đặt \(y=\sqrt{4-x}+\sqrt{2x-2}\)Ta có: \(y^2=4-x+2x-2+2\sqrt{\left(4-x\right)\left(2x-2\right)}\)
\(\Leftrightarrow x+2+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2\Leftrightarrow x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2-2\)
Phương trình trở thành: \(5+y^2-2=4y\)
\(\Leftrightarrow y^2-4y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=3\end{cases}}\) ( Vì \(a+b+c=0\))
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{4-x}\ge0\\2x-2=\left(1-\sqrt{4-x}\right)^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le1\\2x-2=1-2\sqrt{4-x}+4-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le4-x\le1\\2\sqrt{4-x}=7-3x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3\le x\le4;7-3x\ge0\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\) \(\Leftrightarrow x\in\varnothing\)
\(\Leftrightarrow\hept{\begin{cases}3-\sqrt{4-x}\ge0\\2x-2=\left(3-\sqrt{4-x}\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2x-2=9-6\sqrt{4-x}+4-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2\sqrt{4-x}=5-x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}0\le4-x\le9;5-x\ge0\\4\left(4-x\right)=\left(5-x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\x^2-6x+9=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất là \(x=3\)
(Làm xong hoa mắt :((