K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

a, 3x3  + 2x2  + 2x + 3 = 0

<=>3x3+3+2x2+2x=0

<=>3(x3+1)+2x.(x+1)=0

<=>3.(x+1)(x2-x+1)+2x.(x+1)=0

<=>(x+1)[3.(x2-x+1)+2x]=0

<=>(x+1)(3x2-3x+3+2x)=0

<=>(x+1)(3x2-x+3)=0

mà 3x2-x+3=3.(x2-\(\frac{1}{3}\)x+1)

=3.(x2-2.x.\(\frac{1}{6}\)+\(\frac{1}{36}+\frac{35}{36}\))

=3.(x2-2.x.\(\frac{1}{6}+\frac{1}{36}\))\(+\frac{35}{12}\)

=3.(x-\(\frac{1}{6}\))2+\(\frac{35}{12}\ge0\left(\text{vì (x-}\frac{1}{6}\text{)}\ge0\right)\)

nên x+1=0

<=>x=-1

 

20 tháng 1 2019

a) \(x^3-3x^2+4=0\)

\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)

\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=0+3\)

\(\Leftrightarrow2x=3\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

5 tháng 2 2018

a)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy....

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

27 tháng 1 2016

a/. x3 - 9x2 +27x - 19 = 0

<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0

<=> (x - 3)3 + 8 = 0

<=> (x - 3 + 2) [(x - 3)- 2(x-3) +4] = 0

<=> (x -1)(x- 6x+ 9 -2x +6 +4) =0

<=> (x - 1)(x2  - 8x + 19) = 0

<=> x - 1 = 0 => x = 1

Vậy S = {1}

Xem lại đề câu b nha bạn?

c/. x3 + 1 -7x -7 =0 

<=> (x3 + 1) -7(x+1)=0

<=> (x+1)(x2-x+1) -7(x+1)=0

<=> (x+1)(x2-x+1-7)=0

<=> x + 1 = 0 hay x2 -x - 6 = 0

<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0 

<=>                   x(x - 3) +2(x-3) = 0

<=>                 (x - 3)(x+2) = 0

<=> x = -1 hay x = 3 hay x = -2

Vậy S = {-1;3;-2}

27 tháng 1 2016

X3 - X2-8X2+8X+19X-19=0

<=>X2(X-1)-8X(X-1)+19(X-1)=0

<=>(X-1)(X2-8X+19)=0

vi X2-8X+19=(X-4)2+3>3

 

 

6 tháng 2 2018

Đặt 2x^2+3x-1 = a

pt trở thành : a^2-4.(a+4)+20 = 0

<=> a^2-4a-16+20 = 0

<=> a^2-4a+4 = 0

<=> (a-2)^2 = 0

<=> a-2 = 0

<=> a = 2

<=> 2x^2+3x-1 = 2

<=> 2x^2+3x-3 = 0

Đến đó tự giải nha

Tk mk nha

25 tháng 2 2017

a, Đặt \(2^x=t,t>0\)

Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)

Nếu t=2 => x=1

nếu t=8=> x=3

Vậy x=...

b, Đặt: \(2x^2-3x-1=t\)

pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)

* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Vậy x=...

12 tháng 2 2016

a)x2+(x-3)(3x-5)=9

<=>x2+3x2-5x-9x+15=9

,<=>4x2-14x+15=9

<=>4x2-14x+6=0

<=>4x2-12x-2x+6=0

<=>4x(x-3)-2(x-3)=0

<=>(x-3)(4x-2)=0

                 =>  x-3=0 hoặc 4x-2=0 =>x=3 hoặc x=1/2

b)(3x+2)2=(x-4)2

<=>(3x+2)2-(x-4)2=0

<=>(3x+2-x+4)(3x+2+x-4)=0                     (HẰNG ĐẲNG THỨC SỐ 3)

<=>(2x+6)(4x-2)=0

           =>2x+6=0 hoặc 4x-2 => x=-3 hoặc x=1/2

c)Chưa ra thông cảm ahihi

13 tháng 2 2016

c,                        x4+2x3-2x2+2x-3 = 0
<=> (x4-x3)+(3x3-3x2)+(x2-x)+(3x-3) = 0
<=> x3(x-1)+3x2(x-1)+x(x-1)+3(x-1)  = 0
<=>                   (x-1)(x3+3x2+x+3) = 0
<=>                 (x-1)[x2(x+3)+(x+3)] = 0
<=>                       (x-1)(x+3)(x2+1) = 0
<=>                                        x-1  =0  hoặc x+3=0   ( vì x2+1 khác 0 )
<=>                                            x =1 hoặc      x= -3