K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2022

ĐKXĐ: \(x\ne-1;y\ne3\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+1}=u\\\dfrac{1}{y-3}=v\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\3u+v=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\6u+2v=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\7u=\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{1}{2}\\v=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{2}\\\dfrac{1}{y-3}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+1=2\\y-3=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

17 tháng 11 2022

Đặt \(\left\{{}\begin{matrix}x+1=a\left(a\ne0\right)\\y-3=b\left(b\ne0\right)\end{matrix}\right.\)

Hệ pt trở thành \(\left\{{}\begin{matrix}\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\\\dfrac{3}{a}+\dfrac{1}{b}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\\\dfrac{6}{a}+\dfrac{2}{b}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{a}=\dfrac{7}{2}\\\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\left(tm\right)\\\dfrac{1}{2}-\dfrac{2}{b}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2\\y-3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy x=1;y=5

Giải hệ sau :

Câu a :

\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy ...........................

Câu b :

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy..................

12 tháng 1 2018

\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)

8 tháng 1 2018

\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)

Thay vào (1) ta được :

\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}

\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = 1/x ; b = 1/y

Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{4};-3\) )}

c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)

ĐK xác định : x≠0 ; y ≠0

Áp dụng quy tác cộng đại số ta có :

\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}

d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)

ĐK xác định : x≠0 ; y≠0

áp dụng quy tắc cộng đại số ta có :

\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)

Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}

e) ĐK xác định x≠0 ; y≠0

\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)

Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
30 tháng 12 2017

Đặt ẩn phụ nhé

\(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b=< =>\int_{2a-3b=1}^{a+b=3}< =>\int_{2.\left(3-b\right)-3b=1}^{,a=3-b}< =>\int_{b=1}^{a=2}\)

<=>\(\dfrac{1}{x+y}=2;\dfrac{1}{x-y}=1< =>\int_{x-y=1}^{x+y=2}< =>\int_{y=0,5}^{x=1,5}\)

31 tháng 12 2017

Đặt :

\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)

Ta có hệ phương trình :

\(\left\{{}\begin{matrix}u+v=3\\2u-3v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u+2v=6\\2u-3v=1\end{matrix}\right.\)

\(\Leftrightarrow5v=5\Leftrightarrow v=1\)

Thay \(v=1\) vào phương trình thứ nhất ta đc :

\(u+1=3\Leftrightarrow u=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=2\\\dfrac{1}{x-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\x-y=1\end{matrix}\right.\)

\(\Leftrightarrow2y=-\dfrac{1}{2}\Rightarrow y=-\dfrac{1}{4}\)

Thay \(y=-\dfrac{1}{4}\) vào phương trình thứ 2 ta được :

\(x+\dfrac{1}{4}=1\Leftrightarrow x=\dfrac{3}{4}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

17 tháng 1 2018

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)

30 tháng 5 2018

Cộng 2 PT lại ta dc

\(\dfrac{5}{x+1}+\dfrac{y+3-2}{y+1}=-1+7\)

\(=>\dfrac{5}{x+1}+1=6\)

Giai ra tim x rồi thay vào tìm y

13 tháng 1 2019

a, Let's \(\dfrac{1}{x+1}=a;\dfrac{1}{y-1}=b\), we have:

\(\left\{{}\begin{matrix}3a+b=2\\2a-3b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-3a\\2a-3\left(2-3a\right)=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-3a\\2a-6+9a=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-3a\\11a=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=2-3\cdot1\\a=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=-1\\\dfrac{1}{y-1}=1\end{matrix}\right.\)(remember \(\left(x;y\right)\ne-1;1\) :>)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=-1\\y-1=1\end{matrix}\right.\\ \left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\) (satisfied)

So equations (i don't know word "hệ phương trình" in English :>) have 1 root \(\left(x;y\right)=\left(-2;2\right)\).

Enjoyhehe.

31 tháng 12 2022

a: \(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{1}{y-1}=2\\\dfrac{2}{x+1}-\dfrac{3}{y-1}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{x+1}+\dfrac{3}{y-1}=6\\\dfrac{2}{x+1}-\dfrac{3}{y-1}=5\end{matrix}\right.\)

=>11/x+1=11 và 1/y-1=2-3/x+1

=>x+1=1 và 1/y-1=2-3=-1

=>x=0; y-1=-1

=>x=0; y=0

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{6}{y-1}=2\\\dfrac{2}{x+1}+\dfrac{4}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{10}{y-1}=-1\\\dfrac{1}{x+1}=1+\dfrac{3}{y-1}\end{matrix}\right.\)

=>y-1=10; 1/x+1=1+3/10=13/10

=>y=11; x=10/13-1=-3/13