Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\) (đk: \(x\ge0\))
\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)
\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)
\(\Leftrightarrow2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)
\(\Leftrightarrow x=9\)(tmđk)
vậy nghiệm của phtrinh là x = 9
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
Điều kiện: 3x2 - 6x - 6 \(\ge\) 0 và 2 - x \(\ge\) 0
pt <=> \(\sqrt{3x^2-6x-6}=3.\left(2-x\right)^2\sqrt{2-x}+\left(7x-19\right)\sqrt{2-x}\)
<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-12x+12+7x-19\right)\sqrt{2-x}\)
<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-5x-7\right)\sqrt{2-x}\) (1)
Đặt \(\sqrt{3x^2-6x-6}=a;\sqrt{2-x}=b;\left(a;b\ge0\right)\)
=> \(3x^2-6x-6=a^2;2-x=b^2\)=> \(a^2-b^2=3x^2-5x-8\)
=> (1) trở thành: a = (a2 - b2 + 1).b
<=> a = (a- b)(a+b).b + b
<=> (a - b) - (a- b)(a+b).b = 0
<=> (a - b).(1 - b(a+b)) = 0
<=> a = b hoặc (a+b).b = 1
+) a = b => ......
+) (a+b).b = 1 <=> ab + b2 - 1 = 0
<=> \(\sqrt{3x^2-3x-6}.\sqrt{2-x}+\left(2-x\right)-1=0\)
<=> \(\sqrt{3\left(x^2-x-2\right)\left(2-x\right)}=x-1\)
<=> x \(\ge\) 1; 3(x2 - x - 2)(2 - x) = (x-1)2
<=> ........
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)