Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)
b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)\left(3x-1\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)
c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)
d, \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-4x+4-x+2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=3\)
e, \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
CHÚC BẠN HỌC GIỎI.................
a, \(x^2-8x+16=81\Leftrightarrow x^2-8x-65=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=13\)
Vậy tập nghiệm của pt là S = { -5 ; 13 }
b, \(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow\frac{8x+8+6}{20}< \frac{15x-10}{20}\Leftrightarrow8x+14< 15x-10\)
\(\Leftrightarrow-7x< -24\Leftrightarrow x>\frac{24}{7}\)
Vậy tập nghiệm của BFT là S = { x | x > 24/7 }
c, \(\frac{2}{x-2}+\frac{3}{x-3}=\frac{3x-20}{x^2}\)ĐK : \(x\ne0;2;3\)
\(\Leftrightarrow\frac{2x^2\left(x-3\right)+3x^2\left(x-2\right)}{x^2\left(x-2\right)\left(x-3\right)}=\frac{\left(3x-20\right)\left(x-2\right)\left(x-3\right)}{x^2\left(x-2\right)\left(x-3\right)}\)
tự khử mẫu, làm tiếp nhé, mình bị lười :>
d, \(3\left(x-11\right)-2\left(x+11\right)=1964\)
\(\Leftrightarrow3x-33-2x-22=1964\Leftrightarrow x-55=1964\Leftrightarrow x=2019\)
Vâỵ tập nghiệm của pt là S = { 2019 }
e, \(\left|2x-3\right|=5\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=5\Leftrightarrow x=4\)( tm )
Với \(x< \frac{3}{2}\)pt có dạng : \(-2x+3=5\Leftrightarrow-2x=2\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1; 4 }
g, \(\frac{-2x+14}{x-5}+\frac{5x-3}{2x}=\frac{8}{x\left(x-5\right)}\)ĐK : \(x\ne0;5\)
\(\Leftrightarrow\frac{2x\left(-2x+14\right)+\left(5x-3\right)\left(x-5\right)}{2x\left(x-5\right)}=\frac{16}{2x\left(x-5\right)}\)
Tự khử mẫu tự giải nhá :>
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(x^2< 9\)
\(\Leftrightarrow x^2< 3^2\)
\(\Leftrightarrow x< 3\)
\(\left(x-2\right)^2< 4\)
\(\Leftrightarrow\left(x-2\right)^2< 2^2\)
\(\Leftrightarrow x-2< 2\)
\(\Leftrightarrow x< 1\)
\(\left(2x-5\right)^2>9\)
\(\left(2x-5\right)^2>9\)
\(\Leftrightarrow\left(2x-5\right)^2>3^2\)
\(\Leftrightarrow2x-5>3\)
\(\Leftrightarrow2x>8\)
\(\Leftrightarrow x>4\)
\(x^3+2x< 0\)
\(\Leftrightarrow x\left(x^2+2\right)< 0\)
\(TH1:\Leftrightarrow\orbr{\begin{cases}x>0\\x^2+2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x^2< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x\in rỗng\end{cases}}}\)
\(TH2:\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2>-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}X< 0\\X\in RỖNG\end{cases}}}\)
\(x^2-4x+5< 0\)
\(\Leftrightarrow x^2+x-5x-5< 0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(5x+5\right)< 0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1< 0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -1\\x>5\end{cases}\Leftrightarrow}rỗng}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-1\\x< 5\end{cases}\Leftrightarrow-1< x< 5}\)
k cho mk nhé
Giải các phương trình và bất phương trình sau :
1.1
a) \(2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)
b) \(5x-3< 2x+9\)
\(\Leftrightarrow5x-2x< 3+9\)
\(\Leftrightarrow3x< 12\)
\(\Leftrightarrow x< 4\)
Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)
1.2
a) \(3x+2=0\)
\(\Leftrightarrow3x=-2\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)
b) \(-x+5>6-2x\)
\(\Leftrightarrow-x+2x>-5+6\)
\(\Leftrightarrow x>1\)
Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)
c) \(\dfrac{2x-5}{x+3}=4\)
ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)
\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)
\(\Rightarrow2x-5=4x+12\)
\(\Leftrightarrow2x-4x=5+12\)
\(\Leftrightarrow-2x=17\)
\(\Leftrightarrow x=\dfrac{-17}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)
d) \(\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)
1.3
a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)
b) \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)
\(\Leftrightarrow-20x< -25\)
\(\Leftrightarrow x>\dfrac{5}{4}\)
\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)
\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)
\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)
\(\Leftrightarrow-25x\le11\)
\(\Leftrightarrow x\ge-\dfrac{11}{25}\)