Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) \(-x^2+3x+4>0\)
\(\Leftrightarrow-\left(x^2-3x-4\right)>0\)
\(\Leftrightarrow x^2-3x-4< 0\)
\(\Leftrightarrow x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
\(\Leftrightarrow1< x< 4\)
b) \(x^2-6x+5\ge0\)
\(\Leftrightarrow x^2-2.3x+9-4\ge0\)
\(\Leftrightarrow\left(x-3\right)^2-4\ge0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+3\right)\ge0\)
\(\Leftrightarrow x\left(x-5\right)\ge0\)
Còn lại tự làm
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
a) \(x^4+3x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2+\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\))
b) \(x^4+5x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{5}{2}\right)^2=-\frac{11}{4}\) ( vô nghiệm do \(\left(x^2+\frac{5}{2}\right)^2\ge0\ne-\frac{11}{4}\forall x\) )
c) \(x^4-3x^2+9=0\)
\(\Leftrightarrow\left(x^2\right)^2-2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)
\(\Leftrightarrow\left(x^2-\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2-\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\) )
a) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2+3t+9=0\)
Ta có: \(\Delta=3^2-4.9=-27< 0\)
Vậy phương trình vô nghiệm
b) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2+5t+9=0\)
Ta có: \(\Delta=5^2-4.9=-11< 0\)
Vậy phương trình vô nghiệm
c) Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành: \(t^2-3t+9=0\)
Ta có: \(\Delta=3^2-4.9=-27< 0\)
Vậy phương trình vô nghiệm
1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)
b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)\left(3x-1\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)
c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)
d, \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-4x+4-x+2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=3\)
e, \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
CHÚC BẠN HỌC GIỎI.................
\(a,3x^2-3x\left(-2+x\right)\le36\)
\(\Leftrightarrow3x^2+6x-3x^2-36\le0\)
\(\Leftrightarrow6x\le36\)
\(\Leftrightarrow x\le6\)
\(b,\left(x+2\right)^2-9>0\)
\(\Leftrightarrow\left(x+2\right)^2-3^2>0\)
\(\Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x+5>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-5\end{matrix}\right.\)
b: =>(x+2-3)(x+2+3)>0
=>(x+5)(x-1)>0
=>x-1>0 hoặc x+5<0
=>x>1 hoặc x<-5