Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
\(x^2< 9\)
\(\Leftrightarrow x^2< 3^2\)
\(\Leftrightarrow x< 3\)
\(\left(x-2\right)^2< 4\)
\(\Leftrightarrow\left(x-2\right)^2< 2^2\)
\(\Leftrightarrow x-2< 2\)
\(\Leftrightarrow x< 1\)
\(\left(2x-5\right)^2>9\)
\(\left(2x-5\right)^2>9\)
\(\Leftrightarrow\left(2x-5\right)^2>3^2\)
\(\Leftrightarrow2x-5>3\)
\(\Leftrightarrow2x>8\)
\(\Leftrightarrow x>4\)
\(x^3+2x< 0\)
\(\Leftrightarrow x\left(x^2+2\right)< 0\)
\(TH1:\Leftrightarrow\orbr{\begin{cases}x>0\\x^2+2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x^2< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x\in rỗng\end{cases}}}\)
\(TH2:\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2>-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}X< 0\\X\in RỖNG\end{cases}}}\)
\(x^2-4x+5< 0\)
\(\Leftrightarrow x^2+x-5x-5< 0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(5x+5\right)< 0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1< 0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -1\\x>5\end{cases}\Leftrightarrow}rỗng}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-1\\x< 5\end{cases}\Leftrightarrow-1< x< 5}\)
k cho mk nhé
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
3.(2x2+5) > 6x.(x+5)
<=>6x2+15 > 6x2+30x
<=>15 > 30x (cùng bớt đi 6x2)
<=>30x < 15
<=>x < \(\frac{15}{30}=\frac{1}{2}\)
Vậy x < 1/2 thì thỏa mãn BPT
3(2x2+5) \(\ge\) 6x(x+5)
\(\Leftrightarrow\) 6x2 +15 \(\ge\) 6x2 + 30x
\(\Leftrightarrow\) 15 \(\ge\) 30x \(\Leftrightarrow\) x \(\le\)\(\frac{1}{2}\)
a) \(-x^2+3x+4>0\)
\(\Leftrightarrow-\left(x^2-3x-4\right)>0\)
\(\Leftrightarrow x^2-3x-4< 0\)
\(\Leftrightarrow x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
\(\Leftrightarrow1< x< 4\)
b) \(x^2-6x+5\ge0\)
\(\Leftrightarrow x^2-2.3x+9-4\ge0\)
\(\Leftrightarrow\left(x-3\right)^2-4\ge0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+3\right)\ge0\)
\(\Leftrightarrow x\left(x-5\right)\ge0\)
Còn lại tự làm
tự trả lời :
2x + 4x2 >8
2x(1 + 2x) >8
TH1 : 2x > 8
x > 4
TH2 : 1 + 2x >8
2x > 7
x > \(\frac{7}{2}\)
\(x+x^2< 5\)
\(\Leftrightarrow x^2+x< 5\)
\(\Leftrightarrow x(x+1)< 5\)
\(\Leftrightarrow\orbr{\begin{cases}x< 5\\x+1< 5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 5\\x< 4\end{cases}}\)
Bạn 🕎NG Hùng Dũng🔯( Team Boss ) biết làm rồi mà sao ko làm bài cuối