K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

ĐKXĐ: \(x\ge3\)

Khi đó \(\sqrt{2x-1}\ge\sqrt{5}>1\Rightarrow\sqrt{2x-1}-1>0\)

Đồng thời \(\sqrt{x+3}>\sqrt{x-3}\) \(\forall x\Rightarrow\sqrt{x+3}-\sqrt{x-3}>0\)

Do đó BPT tương đương:

\(\sqrt{x-3}\left(\sqrt{x+3}-\sqrt{x-3}\right)\ge\sqrt{2x-1}-1\)

\(\Leftrightarrow\sqrt{x^2-9}-x+3\ge\sqrt{2x-1}-1\)

\(\Leftrightarrow\sqrt{x^2-9}\ge x-4+\sqrt{2x-1}\)

Do \(x-4+\sqrt{2x-1}\ge3-4+\sqrt{5}>0;\forall x\ge3\) nên BPT tương đương:

\(x^2-9\ge x^2-8x+16+2x-1+2\left(x-4\right)\sqrt{2x-1}\)

\(\Leftrightarrow\left(x-4\right)\sqrt{2x-1}-3\left(x-4\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(\sqrt{2x-1}-3\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2x-1-9}{\sqrt{2x-1}+3}\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\le0\Leftrightarrow4\le x\le5\)

NV
30 tháng 6 2020

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2x+1}=a\\\sqrt[3]{x}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+b=1\\a^3-2b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1-b\\a^3-2b^3=1\end{matrix}\right.\)

\(\Rightarrow\left(1-b\right)^3-2b^3=1\)

\(\Leftrightarrow1-3b+3b^2-b^3-2b^3=1\)

\(\Leftrightarrow-3b\left(b^2-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=0\\b^2-b+1=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\sqrt[3]{x}=0\Rightarrow x=0\)

28 tháng 2 2019

\(\sqrt{2x-1}\ge0\)

\(\Rightarrow BPT\ge0\) khi

\(3-2x-x^2\ge0\)

\(\Leftrightarrow x^2+2x-3\le0\)

\(\Leftrightarrow\left(x+1\right)^2-4\le0\)

\(\Leftrightarrow\left(x+1\right)^2\le4\)

\(\Leftrightarrow x+1\le2\)

\(\Rightarrow x\le1\)

NV
20 tháng 5 2020

ĐKXĐ: \(x\ge-\frac{3}{2}\)

Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:

\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)

- Với \(x=-1\) ko phải là nghiệm

- Với \(x\ne-1\)

\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)

\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)

\(\Leftrightarrow2\sqrt{3+2x}< -3\)

BPT vô nghiệm