K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

a: =>(x-1)(x-2)<=0

=>1<=x<=2

b: =>(x^2-1)(x^2-2)<=0

=>1<=x^2<=2

=>\(\left[{}\begin{matrix}1< =x< =\sqrt{2}\\-1>=x>=-\sqrt{2}\end{matrix}\right.\)

a: =>4x+12<=2x-1

=>2x<=-13

=>x<=-13/2

b: =>x^2-2x+1+4<0

=>(x-1)^2+4<0(loại)

c: =>(x-2+x+3)/(x+3)<0

=>(2x+1)/(x+3)<0

=>-3<x<-1/2

11 tháng 1 2020
https://i.imgur.com/NIunWu5.jpg
30 tháng 3 2017

a) \(4x^2-x+1< 0\)

Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.

Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.


30 tháng 3 2017

b) f(x) = - 3x2 + x + 4 = 0

\(\Delta=1^2-4\left(-3\right).4=49\)

\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)

\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)

- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .



13 tháng 3 2019

từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1

1)vô nghiệm

2)vô nghiệm

3)luôn đúng

4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)

13 tháng 3 2019

5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm

23 tháng 11 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
3 tháng 4 2020

a/ \(\Leftrightarrow\left(4-x\right)\left(x+1\right)\left(x-8\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\4< x< 8\end{matrix}\right.\)

b/ \(\frac{1-2x}{x}\le0\Rightarrow\left[{}\begin{matrix}x\ge\frac{1}{2}\\x< 0\end{matrix}\right.\)

c/ \(\left|2x+1\right|< 3x\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x>0\Rightarrow2x+1>0\)

\(BPT\Leftrightarrow2x+1< 3x\Rightarrow x>1\)

d/ \(\sqrt{3x+1}\le x+1\)

ĐKXĐ: \(x\ge-\frac{1}{3}\)

DO 2 vế của BPT ko âm, bình phương 2 vế:

\(\left(x+1\right)^2\ge3x+1\)

\(\Leftrightarrow x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)

Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\frac{1}{3}\le x\le0̸\\x\ge1\end{matrix}\right.\)