Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)
\(\Leftrightarrow-8x-7>0\)
\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)
0 -7/8 (
\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)
\(\Leftrightarrow4x^2-4x^2-6x< x-1\)
\(\Leftrightarrow-6x-x< x-1\)
\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)
Vậy....
1/7 0 (
Lời giải:
a) Nếu không điều kiện gì của $x$ thì biểu thức không có GTNN
vì cho $x$ chạy từ \(-100\) đến âm vô cùng thì giá trị $A$ càng nhỏ (âm) vô cùng
b) Điều kiện: \(x>0\)
\(B=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^6+\frac{1}{x^6} \right )-2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left ( x+\frac{1}{x} \right )^6-\left [ (x^3+\frac{1}{x^3})^2-2 \right ]-2}{\left ( x+\frac{1}{x}\right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^3+\frac{1}{x^3} \right )^2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left [ \left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right ) \right ]\left [ \left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right ) \right ]}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right )=\left ( x+\frac{1}{x} \right )^3-\left [ \left ( x+\frac{1}{x} \right )^3-3.x.\frac{1}{x}\left ( x+\frac{1}{x} \right ) \right ]\) (sd hằng đẳng thức đáng nhớ \(x^3+y^3=(x+y)^3-3xy(x+y)\) )
\(=3\left(x+\frac{1}{x}\right)\geq 3.2\sqrt{x.\frac{1}{x}}=6\) (theo BĐT Cô-si cho hai số dương)
Vậy \(B_{\min}=6\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ x>0\end{matrix}\right.\Leftrightarrow x=1\)
\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)
\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)
\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)
Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)
a, Xét 2 trường hợp: x+1/9<0
2x-5<0
Tự làm nốt nhé, chuyển vế mà k bít làm thì mình bó tay.
b, Tương tự câu a, nhưng chọn 1 cái âm và 2 cái còn lại dương
VD: Xét 4x-1 âm, còn lại dương
TỰ LÀM NỐT ĐI, CHUYỂN VẾ NHÉ. BẤM NÚT ĐÚNG Ở PHÍA DƯỚI ĐẤY
1. a) 4( 2x + 3 ) - 3 ( 2 - 3x ) = 7
<=> 8x + 12 - 6 + 9x = 7
<=> 17x + 6 = 7
<=> 17x = 1
<=> x = 1/17
Vậy phương trình trên có nghiệm là x = 1/17
Chúc bạn học tốt!!!
b) \(\dfrac{\left(x-1\right)^2}{3}+\dfrac{\left(x+3\right)^2}{6}=\dfrac{\left(x-2\right)\left(x+1\right)}{2}\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{3}+\dfrac{x^2+6x+9}{6}=\dfrac{x^2+x-2x-2}{2}\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{3.2}+\dfrac{x^2+6x+9}{6}=\dfrac{x^2-x-2}{2}\)
\(\Leftrightarrow\dfrac{\left(x^2-2x+1\right)2}{3.2}+\dfrac{x^2+6x+9}{6}=\dfrac{\left(x^2-x-2\right)3}{2.3}\)
\(\Leftrightarrow\dfrac{2x^2-4x+2}{6}+\dfrac{x^2+6+9}{6}=\dfrac{3x^2-3x-6}{6}\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow3x^2+2x+11=3x^2-3x-6\)
\(\Leftrightarrow3x^2+2x-3x+3x=-6-11\)
\(\Leftrightarrow5x=-17\)
\(\Leftrightarrow x=\dfrac{-17}{5}\)
Vậy phương trình trên có nghiệm là \(x=\dfrac{-17}{5}\)
Chúc bạn học tốt!!!
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a: \(\dfrac{2x-6}{x+2}>0\)
=>x-3>0 hoặc x+2<0
=>x>3 hoặc x<-2
b:
Theo BXD, ta có: f(x)>0
=>-3<x<1 hoặc x>2