Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x\left(x-3\right)=x-3.\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy .....
b, \(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{\left(x+2\right)\cdot x}{\left(x-2\right)\cdot x}-\frac{5\left(x-2\right)}{x\left(x-2\right)}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-\left(5x-10\right)}{\left(x-2\right)x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-5x+10}{x^2-2x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow x^2+2x-5x+10=8\)
\(\Leftrightarrow x^2-3x+10-8=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy ....
a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)
\(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)
\(\Rightarrow2\left(3x-2\right)\ge5x+8\)
\(=6x-4\ge5x+8\)
\(=6x-5x\ge8+4\)
\(x\ge12\)(1)
\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)
\(=12-4x+10>9-3x\)
\(=-4x+3x>9-12-10\)
\(=-x>-13\)
\(=x< 13\) (2)
Từ (1) và (2) => \(13>x\ge12\)=> x=12
\(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)+5\)
\(\Leftrightarrow10-5x< 9-6x+5\)
\(\Leftrightarrow10-5x< -6x+14\)
\(\Leftrightarrow x< 4\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 4}
0 4 )
#Học tốt!
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)
\(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)
\(\Leftrightarrow\) \(\frac{10x}{2}-\frac{3-2x}{2}>\frac{7x-5}{2}+\frac{2x}{2}\)
\(\Rightarrow\) \(10x-3+2x>7x-5+2x\)
\(\Leftrightarrow\) \(10x+2x-7x-2x>-5+3\)
\(\Leftrightarrow\) \(3x>-2\)
\(\Leftrightarrow\) \(x>-\frac{2}{3}\)
Vậy ................
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
\(\frac{2x-3}{4}-\frac{x+1}{3}>\frac{1}{2}-\frac{3-x}{5}\Leftrightarrow\left(\frac{2}{4}-\frac{1}{3}-\frac{1}{5}\right)x>\frac{1}{2}-\frac{3}{5}+\frac{3}{4}+\frac{1}{3}\)
\(\Leftrightarrow-\frac{1}{30}x>\frac{59}{60}\Leftrightarrow x< -\frac{59}{2}\)