K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2020

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow4\sqrt{2x^2-10x+16}-4x+12-4\sqrt{x-1}\le0\)

\(\Leftrightarrow4\sqrt{2x^2-10x+16}-5x+9+x+3-4\sqrt{x-1}\le0\)

\(\Leftrightarrow\frac{16\left(2x^2-10x+16\right)-\left(5x-9\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}\le0\)

\(\Leftrightarrow\frac{7\left(x-5\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}\le0\)

\(\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy BPT có nghiệm duy nhất \(x=5\)

3 tháng 4 2020

Cảm ơn ạ

NV
20 tháng 5 2020

ĐKXĐ: \(-2\le x\le3\)

\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)

\(\Leftrightarrow x^2-x-2\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)

NV
13 tháng 3 2020

Đặt \(x^2-3x+3=t>0\)

\(\sqrt{t}+\sqrt{t+3}\ge3\)

\(\Leftrightarrow2t+3+2\sqrt{t^2+3t}\ge9\)

\(\Leftrightarrow\sqrt{t^2+3t}\ge3-t\)

- Với \(t>3\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(t\le3\)

\(\Leftrightarrow t^2+3t\ge t^2-6t+9\Rightarrow t\ge1\)

Vậy nghiệm của BPT là \(t\ge1\Leftrightarrow\sqrt{x^2-3x+3}\ge1\)

\(\Leftrightarrow x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

NV
5 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)

\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)

\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)

Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)

b/ ĐKXĐ: \(x\ge4\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\le5\) bình phương 2 vế:

\(2\left(x^2-16\right)>4\left(x-5\right)^2\)

\(\Leftrightarrow x^2-20x+66< 0\)

\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)

Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)

4 tháng 5 2020

x-3 ; mình đánh thiếu

13 tháng 2 2020

Mình nghĩ là thế này

Ta có: x2+1>0 ∀xϵR

x2+2x+3=(x+1)2+1>0 ∀xϵR

x2+4x+5=(x+2)2+1 >0 ∀xϵR

nên \(\sqrt{x^2+1}+2\sqrt{x^2+2x+3}\ge3\sqrt{x^2+4x+5}\)

\(\Leftrightarrow\sqrt{x^2+1}+2\sqrt{\left(x+1\right)^2+1}\ge3\sqrt{\left(x+2\right)^2+1}\)

\(\Leftrightarrow x+1+2\left(x+1\right)+2\ge3\left(x+2\right)+3\)

\(\Leftrightarrow x+3+2x+2\ge3x+6+3\)

\(\Leftrightarrow3x+5\ge3x+9\Leftrightarrow0x\ge4\) (vô nghiệm)

Vậy S=∅

NV
13 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\)

\(a+2b\ge3\sqrt{2b^2-a^2}\)

\(\Leftrightarrow a^2+4b^2+4ab\ge18b^2-9a^2\)

\(\Leftrightarrow5a^2+2ab-7b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(5a+7b\right)\ge0\)

\(\Leftrightarrow a-b\ge0\) (do \(5a+7b>0\))

\(\Leftrightarrow a\ge b\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x^2+2x+3}\)

\(\Leftrightarrow x^2+1\ge x^2+2x+3\Leftrightarrow x\le-1\)

Vậy nghiệm của BPT là \(x\le-1\)

24 tháng 3 2021

Nhóm BPT : 2(2x^2+1)-√(2x^2+1)(x+1)  -6(x+1)>0

Đk dưới căn có nghĩa x>=-1.

Với x=-1 là một nghiệm--> nhận x=-1

Với x>-1, chia 2 vế cho x+1>0, Bđt ko đổi chiều.

2.(2x^2+1)/(x+1) - √(2x^2+1)/(x+1)  - 6 >0

Đặt t=√(2x^2+1)/(x+1) , t>0, ta được

2t^2-t-6>0 --> t>2 ....bài toán dễ dàng rồi!